Home
Class 12
MATHS
Find the solution of tan^(-1) 2x +tan^(-...

Find the solution of `tan^(-1) 2x +tan^(-1) 3x = pi/4 , x gt 0 `

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \tan^{-1}(2x) + \tan^{-1}(3x) = \frac{\pi}{4} \) for \( x > 0 \), we can follow these steps: ### Step 1: Use the Addition Formula for Inverse Tangents We know that: \[ \tan^{-1}(a) + \tan^{-1}(b) = \tan^{-1}\left(\frac{a + b}{1 - ab}\right) \] for \( ab < 1 \). Here, let \( a = 2x \) and \( b = 3x \). ### Step 2: Apply the Formula Applying the formula, we have: \[ \tan^{-1}(2x) + \tan^{-1}(3x) = \tan^{-1}\left(\frac{2x + 3x}{1 - (2x)(3x)}\right) = \tan^{-1}\left(\frac{5x}{1 - 6x^2}\right) \] So, we can rewrite the equation as: \[ \tan^{-1}\left(\frac{5x}{1 - 6x^2}\right) = \frac{\pi}{4} \] ### Step 3: Take the Tangent of Both Sides Taking the tangent of both sides gives: \[ \frac{5x}{1 - 6x^2} = \tan\left(\frac{\pi}{4}\right) = 1 \] ### Step 4: Cross Multiply Cross multiplying gives: \[ 5x = 1 - 6x^2 \] ### Step 5: Rearrange to Form a Quadratic Equation Rearranging the equation leads to: \[ 6x^2 + 5x - 1 = 0 \] ### Step 6: Solve the Quadratic Equation Now we can use the quadratic formula to solve for \( x \): \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] where \( a = 6, b = 5, c = -1 \). Calculating the discriminant: \[ b^2 - 4ac = 5^2 - 4 \cdot 6 \cdot (-1) = 25 + 24 = 49 \] Now substituting into the quadratic formula: \[ x = \frac{-5 \pm \sqrt{49}}{2 \cdot 6} = \frac{-5 \pm 7}{12} \] ### Step 7: Calculate the Roots Calculating the two possible values for \( x \): 1. \( x = \frac{-5 + 7}{12} = \frac{2}{12} = \frac{1}{6} \) 2. \( x = \frac{-5 - 7}{12} = \frac{-12}{12} = -1 \) ### Step 8: Consider the Condition \( x > 0 \) Since we are given that \( x > 0 \), we discard \( x = -1 \). Thus, the only valid solution is: \[ x = \frac{1}{6} \] ### Final Answer The solution is: \[ \boxed{\frac{1}{6}} \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise COMPLETITION FILE (Questions from JEE Main)|7 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (2)|11 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise Revision Exercise|10 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise COMPETITION FILE|24 Videos
  • LINEAR PROGRAMMING

    MODERN PUBLICATION|Exercise Chapter Test|12 Videos

Similar Questions

Explore conceptually related problems

Solve tan^(-1)2x + tan^(-1)3x = pi/4

Solve the equation tan^(-1) 2x + tan^(-1) 3x = pi//4

Solve the following equations : tan^(-1) (x+2) +tan^(-1) (x-2) = pi/4 , x gt 0

IF tan ^(-1) 2x + tan ^(-1) 3x =(pi)/(4) , then x=

Solve :tan^(-1)2x+tan^(-1)3x=(pi)/(4)

Solve the equation tan^(-1)2x+tan^(-1)3x=(pi)/(4)

Solution of the equation tan^(-1)(2x) + tan^(-1)(3x) = pi/4