Home
Class 12
MATHS
Find the value of sin^(-1) (sin. (4pi)/5...

Find the value of `sin^(-1) (sin. (4pi)/5)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \sin^{-1}(\sin(4\pi/5)) \), we can follow these steps: ### Step 1: Understand the function The function \( \sin^{-1}(x) \) (or arcsin) is defined for \( x \) in the range of \([-1, 1]\) and gives an output in the range of \([- \frac{\pi}{2}, \frac{\pi}{2}]\). ### Step 2: Find the sine value First, we need to find \( \sin(4\pi/5) \). We know that: \[ \sin(4\pi/5) = \sin(\pi - 4\pi/5) = \sin(\pi/5) \] This is because \( \sin(\pi - x) = \sin(x) \). ### Step 3: Use the property of inverse sine Now, we can write: \[ \sin^{-1}(\sin(4\pi/5)) = \sin^{-1}(\sin(\pi/5)) \] ### Step 4: Determine the output range Since \( \pi/5 \) is in the range of \( [0, \frac{\pi}{2}] \), it is also in the range of \( \sin^{-1} \). Therefore: \[ \sin^{-1}(\sin(\pi/5)) = \pi/5 \] ### Conclusion Thus, the value of \( \sin^{-1}(\sin(4\pi/5)) \) is: \[ \boxed{\frac{\pi}{5}} \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise COMPLETITION FILE (Questions from JEE Main)|7 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise COMPETITION FILE|24 Videos
  • LINEAR PROGRAMMING

    MODERN PUBLICATION|Exercise Chapter Test|12 Videos

Similar Questions

Explore conceptually related problems

Find the value of sin^(-1)(sin.(5pi)/3) .

Find the value of sin^(-1)(sin((2pi)/3))

Find the value of sin^(-1)((sin(3 pi))/(5))

Find the value of sin^(-1)(sin7 pi/4)

Find the value of sin^(-1) ( cos. ( 33pi)/5) .

Write the value of sin^(-1) ( sin. ( 3pi)/5) .

Find the value of sin^(-1)(sin(2 pi)/(3))

Find the value of : sin ^(-1)(sin ((5pi )/(4)) )

Find the value of sin^(-1)("sin"(2pi)/(3))+cos^(-1)("cos"(4pi)/(3))

Find the value of cos^(-1) ( cos . (2pi)/3) + sin^(-1) ( sin . (2pi)/3) .