Home
Class 12
MATHS
Prove that tan^(-1)(cosx)/(1+sinx)=(pi/4...

Prove that `tan^(-1)(cosx)/(1+sinx)=(pi/4-x/2)`

Promotional Banner

Topper's Solved these Questions

  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise COMPLETITION FILE (Questions from JEE Main)|7 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise COMPETITION FILE|24 Videos
  • LINEAR PROGRAMMING

    MODERN PUBLICATION|Exercise Chapter Test|12 Videos

Similar Questions

Explore conceptually related problems

Prove that : tan^(-1)((cosx)/(1-sinx))-cot^(-1)(sqrt((1+cosx)/(1-cosx)))=(pi)/(4), x in (0, pi//2) .

Prove that tan^(-1)((cosx-sinx)/(cosx+sinx))=(pi/4-x), x lt pi .

Prove that tan^(-1)(sqrt((1-cosx)/(1+cosx))=x/2, x lt pi .

tan^(-1)((1+sinx)/cosx)=

Show that tan^(-1)[(cosx+sinx)/(cosx-sinx)]=(pi)/(4)+x .

Prove that: tan^(-1){(a cosx-b sinx)/(b cosx+a sinx)} =tan^(-1)((a)/(b))-x

tan^(-1)((cosx+sinx)/(cos x-sinx))

sqrt((1+sinx)/(1-sinx))=tan(pi/4+x/2)

Express each of the following in the simplest form: tan^(-1){(cosx)/(1-sinx)},\ -pi/2

Express each of the following in the simplest form: tan^(-1){sqrt((1-cosx)/(1+cosx))}, -pi