Home
Class 12
MATHS
Expand |{:(3,-5,4),(7,6,1),(1,2,3):}|...

Expand `|{:(3,-5,4),(7,6,1),(1,2,3):}|`

A

`180`

B

`190`

C

`18`

D

`80`

Text Solution

AI Generated Solution

The correct Answer is:
To expand the determinant \( | \begin{pmatrix} 3 & -5 & 4 \\ 7 & 6 & 1 \\ 1 & 2 & 3 \end{pmatrix} | \), we can use the method of cofactor expansion. Let's proceed step by step. ### Step 1: Write the determinant We start with the determinant: \[ D = \begin{vmatrix} 3 & -5 & 4 \\ 7 & 6 & 1 \\ 1 & 2 & 3 \end{vmatrix} \] ### Step 2: Expand using the first row We will expand the determinant along the first row: \[ D = 3 \cdot \begin{vmatrix} 6 & 1 \\ 2 & 3 \end{vmatrix} - (-5) \cdot \begin{vmatrix} 7 & 1 \\ 1 & 3 \end{vmatrix} + 4 \cdot \begin{vmatrix} 7 & 6 \\ 1 & 2 \end{vmatrix} \] ### Step 3: Calculate the 2x2 determinants Now we need to calculate each of the 2x2 determinants: 1. For \( \begin{vmatrix} 6 & 1 \\ 2 & 3 \end{vmatrix} \): \[ = (6 \cdot 3) - (1 \cdot 2) = 18 - 2 = 16 \] 2. For \( \begin{vmatrix} 7 & 1 \\ 1 & 3 \end{vmatrix} \): \[ = (7 \cdot 3) - (1 \cdot 1) = 21 - 1 = 20 \] 3. For \( \begin{vmatrix} 7 & 6 \\ 1 & 2 \end{vmatrix} \): \[ = (7 \cdot 2) - (6 \cdot 1) = 14 - 6 = 8 \] ### Step 4: Substitute back into the determinant Now substitute these values back into our expression for \( D \): \[ D = 3 \cdot 16 + 5 \cdot 20 + 4 \cdot 8 \] ### Step 5: Calculate the final value Now we calculate each term: 1. \( 3 \cdot 16 = 48 \) 2. \( 5 \cdot 20 = 100 \) 3. \( 4 \cdot 8 = 32 \) Now, add these values together: \[ D = 48 + 100 + 32 = 180 \] ### Final Result Thus, the value of the determinant is: \[ \boxed{180} \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    MODERN PUBLICATION|Exercise FREQUENTLY ASKED QUESTIONS|17 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Examples (FREQUENCY ASKED QUESTIONS)|28 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos

Similar Questions

Explore conceptually related problems

Expand |{:(1,2,3),(4,6,2),(5,9,4):}|

The order of the matrices [{:(1,2,3),(4,5,-1):}], [{:(2,4),(9,2),(6,3),(4,1):}] , [{:(4,5,6),(3,2,1),(9,8,7):}] respectively are :

If A={1,2,3},B={3,4}and C={4,5,6}, "then prove that" (AxxB)uu(AxxC) ={(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5 ),(2,6),(3,3),(3,4),(3,5),(3,6)}

If {[(5,1,4),(7,6,2),(1,3,5)][(1,6,-7),(6,2,4),(-7,4,3)][(5,7,1),(1,6,3),(4,2,5)]}^(2020)=[(a_(1),a_(2),a_(3)),(b_(1),b_(2),b_(3)),(c_(1),c_(2),c_(3))] , then the value of 2|a_(2)-b_(1)|+3|a_(3)-c_(1)|+4|b_(3)-c_(2)| is equal to

Let A={1,2,3,4},B={5,6,7} and f={( 1,6),(2,7),(3,5),(4,6)} . The f is :

Compute : 2{:[(2,3,4,1),(-5,11,6,7)]:}+5{:[(11,13,-3,4),(5,-3,4,-7)]:}-6{:[(6,12,4,-2),(-3,5,11,7)]:} .

The volume of the tetrahedron whose vertices are (3, 7, 4), (5, -2, 3), (-4, 5, 6) and (1, 2, 3) are