Home
Class 12
MATHS
Evaluate : Delta=|{:(0,sinalpha,-cosal...

Evaluate :
`Delta=|{:(0,sinalpha,-cosalpha),(-sinalpha,0,sinbeta),(cosalpha,-sinbeta,0):}|`.

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    MODERN PUBLICATION|Exercise FREQUENTLY ASKED QUESTIONS|17 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Examples (FREQUENCY ASKED QUESTIONS)|28 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos

Similar Questions

Explore conceptually related problems

Show without expanding at any stage that: [0,sinalpha-cosalpha],[-sinalpha,0,sinbeta],[cosalphas-sinbeta,0]|=0

If A=[(0,sin alpha, sinalpha sinbeta),(-sinalpha, 0, cosalpha cosbeta),(-sinalpha sinbeta, -cosalphacosbeta, 0)] then (A) |A| is independent of alpha and beta (B) A^-1 depends only on beta (C) A^-1 does not exist (D) none of these

The determinant D=|{:(cos(alpha+beta),-sin(alpha+beta),cos2beta),(sinalpha,cosalpha,sinbeta),(-cosalpha,sinalpha,cosbeta):}| is independent of :-

If A_(alpha)=[(cosalpha,-sinalpha),(sinalpha,cosalpha)] , then

Ecaluate [{:(cosalphacosbeta,cosalphasinbeta,-sinalpha),(-sinbeta,cosbeta,0),(sinalphacosbeta,sinalphasinbeta,cosalpha):}]

Prove that (1-cosalpha)/sinalpha=tan(alpha/2)

If A=[{:(cosalpha,sinalpha),(-sinalpha,cosalpha):}] , show that A'A=I.

costheta-sintheta=cosalpha-sinalpha

Show without expanding at any stage that: | (1,cosalpha-sinalpha, cosalpha+sinalpha),(1,cosbeta-sinbeta,cosbeta+sinbeta),(1, cosgamma-singamma,cosgamma+singamma)| =2 |(1,cosalpha, sinalpha),(1,cosbeta, sinbeta),(1,cosgamma,singamma)|