Home
Class 12
MATHS
|[b^2c^2,bc,b+c] , [c^2a^2,ca,c+a] , [a^...

`|[b^2c^2,bc,b+c] , [c^2a^2,ca,c+a] , [a^2b^2,ab,a+b]|=0`

Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    MODERN PUBLICATION|Exercise Examples (FREQUENCY ASKED QUESTIONS)|28 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Examples (QUESTIONS FROM NCERT EXAMPLAR|4 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Chapter test 4|12 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos

Similar Questions

Explore conceptually related problems

|[b^(2)c^(2),bc,a-c],[c^(2)a^(2),ca,b-c],[a^(2)b^(2),ab,0]|=?

Evaluate |[0,c,b] , [c,0,a] , [b,a,0]| hence show that |[0,c,b] , [c,0,a] , [b,a,0]|^2= |[b^2+c^2,ab,ac] , [ab,c^2+a^2,bc] , [ca,bc,a^2+b^2]|=4a^2b^2c^2

If a,b,c are non-zero real numbers then D=det[[b^(2)c^(2),bc,b+cc^(2)a^(2),ca,c+aa^(2)b^(2),ab,a+b]]=(A)abc(B)a^(2)b^(2)c^(2)(C)bc+ca+ab(D)0,

Without expending, prove that : (i) |{:(b^(2)c^(2),bc,b+c),(c^(2)a^(2),ca,c+a),(a^(2)b^(2),ab,a+b):}|=0 (ii) |{:(x,y,z),(x^(2),y^(2),z^(2)),(yz,zx,xy):}|=|{:(1,1,1),(x^(2),y^(2),z^(2)),(x^(3),y^(3),z^(3)):}| (iii) |{:(1,2x,x^(2)-yz),(1,y,y^(2)-zx),(1,z,z^(2)-xy):}| ("Taking 2, 3 and "2/3"common from "C_(1),C_(2)" and "C_(3)" repectively") =4xx49 ["from eq.(1)"] =198. (iv) |{:(sinx,cosx,sin(x+alpha)),(siny,cosy,sin(y+alpha)),(sinz,cosz,sin(z+alpha)):}|=0

Show that |[0,c,b] , [c,0,a] , [b,a,0]|^2=|[b^2+c^2, ab, ac] , [ab, c^2+a^2, bc] , [ac, bc, a^2+b^2]|

Prove that : |{:(b^(2)c^(2),bc, b+c),(c^(2)a^(2),ca, c+a),(a^(2)b^(2),ab, a+b):}|=0

Prove that |[(b+c)^2, a^2, bc],[(c+a)^2, b^2, ca],[(a+b)^2, c^2, ab]|=(a-b)(b-c)(c-a)(a+b+c)(a^2+b^2+c^2)

Prove that: |[bc-a^2,ca-b^2,ab-c^2],[ca-b^2,ab-c^2,bc-a^2],[ab-c^2,bc-a^2,ca-b^2]| is divisible by a+b+c and find the quotient.

Prove that |[1,1,1] , [a,b,c] ,[a^2-bc, b^2-ca, c^2-ab]|=0

MODERN PUBLICATION-DETERMINANTS-FREQUENTLY ASKED QUESTIONS
  1. The maximum value of |(1,1,1),(1,1+sintheta,1),(1,1,1+costheta)| is 1/...

    Text Solution

    |

  2. Using properties of determinants prove that ((1,1, 1+3x),(1+3y,1,1),(...

    Text Solution

    |

  3. If Delta=|{:(1,a,a^(2)),(a,a^(2),1),(a^(2),1,a):}|=-4, then find the v...

    Text Solution

    |

  4. Prove that : |{:(a+b,b+c,c+a),(b+c,c+a,a+b),(c+a,a+b,b+c):}|=2|{:(a,...

    Text Solution

    |

  5. |[b^2c^2,bc,b+c] , [c^2a^2,ca,c+a] , [a^2b^2,ab,a+b]|=0

    Text Solution

    |

  6. Without expanding, prove that the following determinants vanish : |{...

    Text Solution

    |

  7. If f(x)|a-1 0a x a-1a x^2a x a|, using properties of determinants, fin...

    Text Solution

    |

  8. Using properties of determinants , find the value of k if |{:(x,y,x+...

    Text Solution

    |

  9. Prove that : |{:(a+b+2c,a,b),(c,b+c+2a,b),(c,a,c+a+2b):}|=2(a+b+c)^(...

    Text Solution

    |

  10. If x,y,z are different and Delta=|{:(x,x^(2),1+x^(3)),(y,y^(2),1+y^(3)...

    Text Solution

    |

  11. Prove that : |{:(1+a,1,1),(1,1+b,1),(1,1,1+c):}|=abc(1+(1)/(a)+(1)/(...

    Text Solution

    |

  12. Show that |[1,1,1],[a^2,b^2,c^2],[a^3,b^3,c^3]|=(b-c)(c-a)(a-b)(bc+ca...

    Text Solution

    |

  13. Prove that |{:(a^(2)+1,ab,ac),(ab,b^(2)+1,bc),(ac,bc,c^(2)+1):}|=1+a...

    Text Solution

    |

  14. Prove that |y z-x^2z x-y^2x y-z^2z x-y^2x y-z^2y z-x^2x y-z^2y z-x^2z ...

    Text Solution

    |

  15. Prove that |[-a^(2),ab,ac],[ba,-b^(2),bc],[ca,cb,-c^(2)]|=4a^(2)b^(2)c...

    Text Solution

    |

  16. |[x+2,x+6,x-1],[x+6,x-1,x+2],[x-1,x+2,x+6]|=

    Text Solution

    |

  17. Using properties of determinants, prove that : |{:((x+y)^(2),zx,xy),...

    Text Solution

    |