Home
Class 12
MATHS
Using properties of determinants , find ...

Using properties of determinants , find the value of `k` if
`|{:(x,y,x+y),(y,x+y,x),(x+y,x,y):}|=k(x^(3)+y^(3))`.

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( k \) in the equation \[ \left| \begin{array}{ccc} x & y & x+y \\ y & x+y & x \\ x+y & x & y \end{array} \right| = k(x^3 + y^3), \] we will use properties of determinants. ### Step 1: Rewrite the determinant We start with the determinant: \[ D = \left| \begin{array}{ccc} x & y & x+y \\ y & x+y & x \\ x+y & x & y \end{array} \right| \] We can simplify the determinant by manipulating the columns. We will replace the first column with the sum of all three columns: \[ C_1 \rightarrow C_1 + C_2 + C_3 \] This gives us: \[ D = \left| \begin{array}{ccc} x + y + (x+y) & y & x \\ y + (x+y) + x & x+y & x \\ (x+y) + x + y & x & y \end{array} \right| \] This simplifies to: \[ D = \left| \begin{array}{ccc} 2(x+y) & y & x \\ 2(x+y) & x+y & x \\ 2(x+y) & x & y \end{array} \right| \] ### Step 2: Factor out common terms Notice that \( 2(x+y) \) is common in the first column. We can factor it out: \[ D = 2(x+y) \left| \begin{array}{ccc} 1 & y & x \\ 1 & x+y & x \\ 1 & x & y \end{array} \right| \] ### Step 3: Simplify the determinant Now we will simplify the determinant: \[ \left| \begin{array}{ccc} 1 & y & x \\ 1 & x+y & x \\ 1 & x & y \end{array} \right| \] We can perform row operations. Subtract the first row from the second and third rows: \[ = \left| \begin{array}{ccc} 1 & y & x \\ 0 & (x+y - y) & (x - x) \\ 0 & (x - y) & (y - x) \end{array} \right| \] This simplifies to: \[ = \left| \begin{array}{ccc} 1 & y & x \\ 0 & x & 0 \\ 0 & (x - y) & (y - x) \end{array} \right| \] ### Step 4: Calculate the determinant Now we can calculate the determinant: \[ = 1 \cdot \left| \begin{array}{cc} x & 0 \\ x - y & y - x \end{array} \right| \] Calculating this 2x2 determinant: \[ = 1 \cdot (x(y - x) - 0) = xy - x^2 \] ### Step 5: Substitute back into the determinant Now substituting back, we have: \[ D = 2(x+y)(xy - x^2) \] ### Step 6: Use the identity for \( x^3 + y^3 \) Recall that: \[ x^3 + y^3 = (x+y)(x^2 - xy + y^2) \] We can express \( xy - x^2 \) in terms of \( x^3 + y^3 \): \[ D = 2(x+y)(-1)(x^2 - xy + y^2) = -2(x+y)(x^2 - xy + y^2) \] ### Step 7: Equate to find \( k \) Now, we compare this with \( k(x^3 + y^3) \): \[ -2(x+y)(x^2 - xy + y^2) = k(x^3 + y^3) \] ### Step 8: Solve for \( k \) From the identity \( x^3 + y^3 = (x+y)(x^2 - xy + y^2) \), we can conclude: \[ k = -2 \] Thus, the value of \( k \) is \[ \boxed{-2}. \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    MODERN PUBLICATION|Exercise Examples (FREQUENCY ASKED QUESTIONS)|28 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Examples (QUESTIONS FROM NCERT EXAMPLAR|4 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Chapter test 4|12 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos

Similar Questions

Explore conceptually related problems

Use properties of determinants to evaluate : |{:(x+y,y+z,z+x),(z,x,y),(1,1,1):}|

Using properties of determinants, prove the following |[x,x+y,x+2y],[x+2y,x,x+y],[x+y,x+2y,x]|=9y^2(x+y)

By using properties of determinants. Show that: (i) |(x+4,2x,2x),(2x,x+4,2x),(2x,2x,x+4)|=(5x-4)(4-x)^2 (ii) |(y+k,y,y),(y,y+k,y),(y,y,y+k)|=k^2(3y+k)

If x=2 and y=3 , find the value of x^x + y^y =

If x=3 and y=1 , find the value of x^x + y^y .

Using properties of determinants, prove that |[a+x,y,z],[x,a+y,z],[x,y,a+z]|=a^2(a+x+y+z)

Find the value of x , if [(3x+y,-y),(2y-x,3)]=[(1, 2),(-5, 3)] .

Find the values of X and Y [{:(x+y),(" "3x""):}]=[{:(-2),(6):}].

MODERN PUBLICATION-DETERMINANTS-FREQUENTLY ASKED QUESTIONS
  1. The maximum value of |(1,1,1),(1,1+sintheta,1),(1,1,1+costheta)| is 1/...

    Text Solution

    |

  2. Using properties of determinants prove that ((1,1, 1+3x),(1+3y,1,1),(...

    Text Solution

    |

  3. If Delta=|{:(1,a,a^(2)),(a,a^(2),1),(a^(2),1,a):}|=-4, then find the v...

    Text Solution

    |

  4. Prove that : |{:(a+b,b+c,c+a),(b+c,c+a,a+b),(c+a,a+b,b+c):}|=2|{:(a,...

    Text Solution

    |

  5. |[b^2c^2,bc,b+c] , [c^2a^2,ca,c+a] , [a^2b^2,ab,a+b]|=0

    Text Solution

    |

  6. Without expanding, prove that the following determinants vanish : |{...

    Text Solution

    |

  7. If f(x)|a-1 0a x a-1a x^2a x a|, using properties of determinants, fin...

    Text Solution

    |

  8. Using properties of determinants , find the value of k if |{:(x,y,x+...

    Text Solution

    |

  9. Prove that : |{:(a+b+2c,a,b),(c,b+c+2a,b),(c,a,c+a+2b):}|=2(a+b+c)^(...

    Text Solution

    |

  10. If x,y,z are different and Delta=|{:(x,x^(2),1+x^(3)),(y,y^(2),1+y^(3)...

    Text Solution

    |

  11. Prove that : |{:(1+a,1,1),(1,1+b,1),(1,1,1+c):}|=abc(1+(1)/(a)+(1)/(...

    Text Solution

    |

  12. Show that |[1,1,1],[a^2,b^2,c^2],[a^3,b^3,c^3]|=(b-c)(c-a)(a-b)(bc+ca...

    Text Solution

    |

  13. Prove that |{:(a^(2)+1,ab,ac),(ab,b^(2)+1,bc),(ac,bc,c^(2)+1):}|=1+a...

    Text Solution

    |

  14. Prove that |y z-x^2z x-y^2x y-z^2z x-y^2x y-z^2y z-x^2x y-z^2y z-x^2z ...

    Text Solution

    |

  15. Prove that |[-a^(2),ab,ac],[ba,-b^(2),bc],[ca,cb,-c^(2)]|=4a^(2)b^(2)c...

    Text Solution

    |

  16. |[x+2,x+6,x-1],[x+6,x-1,x+2],[x-1,x+2,x+6]|=

    Text Solution

    |

  17. Using properties of determinants, prove that : |{:((x+y)^(2),zx,xy),...

    Text Solution

    |