Home
Class 12
MATHS
Prove that |y z-x^2z x-y^2x y-z^2z x-y^2...

Prove that `|y z-x^2z x-y^2x y-z^2z x-y^2x y-z^2y z-x^2x y-z^2y z-x^2z x-y^2|` is divisible by `(x+y+z),` and hence find the quotient.

Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    MODERN PUBLICATION|Exercise Examples (FREQUENCY ASKED QUESTIONS)|28 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Examples (QUESTIONS FROM NCERT EXAMPLAR|4 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Chapter test 4|12 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos

Similar Questions

Explore conceptually related problems

Prove that quad det ([yx-x^(2),zx-y^(2),xy-z^(2)zx-y^(2),xy-z^(2),yz-x^(2)xy-z^(2),yz-x^(2),zx-y^(2)]) is divisible by (x+y+z) and hence find the quotient.

x-y+z=1 2x+y-z=2 x-2y-z=4

x(y^(2)-z^(2))+y(z^(2)-x^(2))+z(x^(2)-y^(2)) is divisible by

2x+y-z=1 x-y+z=2 3x+y-2z=-1

Show that : |x y z x^2y^2z^2x^3y^3z^3|=x y z(x-y)(y-z)(z-x)dot

Prove that |x^2x^2-(y-z)^2y z y^2y^2-(z-x)^2z x z^2z^2-(x-y)^2x y|=(x-y)(y-z)(z-x)(x+y+z)(x^2+y^2+z^2)dot

Prove: |(2y, y-z-x,2y),(2z,2z, z-x-y),( x-y-z,2x,2x)|=(x+y+z)^3

If x+y+z=xzy , prove that : x(1-y^2) (1-z^2) + y(1-z^2) (1-x^2) + z (1-x^2) (1-y^2) = 4xyz .

Prove that : |{:(x-y-z,2x,2x),(2y,y-z-x,2y),(2z,2z,z-x-y):}|

MODERN PUBLICATION-DETERMINANTS-FREQUENTLY ASKED QUESTIONS
  1. The maximum value of |(1,1,1),(1,1+sintheta,1),(1,1,1+costheta)| is 1/...

    Text Solution

    |

  2. Using properties of determinants prove that ((1,1, 1+3x),(1+3y,1,1),(...

    Text Solution

    |

  3. If Delta=|{:(1,a,a^(2)),(a,a^(2),1),(a^(2),1,a):}|=-4, then find the v...

    Text Solution

    |

  4. Prove that : |{:(a+b,b+c,c+a),(b+c,c+a,a+b),(c+a,a+b,b+c):}|=2|{:(a,...

    Text Solution

    |

  5. |[b^2c^2,bc,b+c] , [c^2a^2,ca,c+a] , [a^2b^2,ab,a+b]|=0

    Text Solution

    |

  6. Without expanding, prove that the following determinants vanish : |{...

    Text Solution

    |

  7. If f(x)|a-1 0a x a-1a x^2a x a|, using properties of determinants, fin...

    Text Solution

    |

  8. Using properties of determinants , find the value of k if |{:(x,y,x+...

    Text Solution

    |

  9. Prove that : |{:(a+b+2c,a,b),(c,b+c+2a,b),(c,a,c+a+2b):}|=2(a+b+c)^(...

    Text Solution

    |

  10. If x,y,z are different and Delta=|{:(x,x^(2),1+x^(3)),(y,y^(2),1+y^(3)...

    Text Solution

    |

  11. Prove that : |{:(1+a,1,1),(1,1+b,1),(1,1,1+c):}|=abc(1+(1)/(a)+(1)/(...

    Text Solution

    |

  12. Show that |[1,1,1],[a^2,b^2,c^2],[a^3,b^3,c^3]|=(b-c)(c-a)(a-b)(bc+ca...

    Text Solution

    |

  13. Prove that |{:(a^(2)+1,ab,ac),(ab,b^(2)+1,bc),(ac,bc,c^(2)+1):}|=1+a...

    Text Solution

    |

  14. Prove that |y z-x^2z x-y^2x y-z^2z x-y^2x y-z^2y z-x^2x y-z^2y z-x^2z ...

    Text Solution

    |

  15. Prove that |[-a^(2),ab,ac],[ba,-b^(2),bc],[ca,cb,-c^(2)]|=4a^(2)b^(2)c...

    Text Solution

    |

  16. |[x+2,x+6,x-1],[x+6,x-1,x+2],[x-1,x+2,x+6]|=

    Text Solution

    |

  17. Using properties of determinants, prove that : |{:((x+y)^(2),zx,xy),...

    Text Solution

    |