Home
Class 12
MATHS
Find the product of the determinants : ...

Find the product of the determinants :
`|{:(1,2,1),(-1,0,0),(1,0,1):}|xx|{:(1,-1,0),(0,1,2),(2,-1,1):}|`

Text Solution

AI Generated Solution

The correct Answer is:
To find the product of the determinants of the two given matrices, we will first calculate the determinant of each matrix separately and then multiply the results. ### Step 1: Calculate the determinant of the first matrix The first matrix is: \[ A = \begin{pmatrix} 1 & 2 & 1 \\ -1 & 0 & 0 \\ 1 & 0 & 1 \end{pmatrix} \] To find the determinant of matrix \(A\), we can use the formula for the determinant of a 3x3 matrix: \[ \text{det}(A) = a(ei - fh) - b(di - fg) + c(dh - eg) \] where the matrix is represented as: \[ \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} \] For our matrix \(A\): - \(a = 1\), \(b = 2\), \(c = 1\) - \(d = -1\), \(e = 0\), \(f = 0\) - \(g = 1\), \(h = 0\), \(i = 1\) Now substituting into the determinant formula: \[ \text{det}(A) = 1(0 \cdot 1 - 0 \cdot 0) - 2(-1 \cdot 1 - 0 \cdot 1) + 1(-1 \cdot 0 - 0 \cdot 1) \] \[ = 1(0) - 2(-1) + 1(0) \] \[ = 0 + 2 + 0 = 2 \] ### Step 2: Calculate the determinant of the second matrix The second matrix is: \[ B = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & 2 \\ 2 & -1 & 1 \end{pmatrix} \] Using the same determinant formula: For matrix \(B\): - \(a = 1\), \(b = -1\), \(c = 0\) - \(d = 0\), \(e = 1\), \(f = 2\) - \(g = 2\), \(h = -1\), \(i = 1\) Now substituting into the determinant formula: \[ \text{det}(B) = 1(1 \cdot 1 - 2 \cdot -1) - (-1)(0 \cdot 1 - 2 \cdot 2) + 0(0 \cdot -1 - 1 \cdot 2) \] \[ = 1(1 + 2) + 1(0 - 4) + 0 \] \[ = 1(3) + 1(-4) + 0 = 3 - 4 = -1 \] ### Step 3: Calculate the product of the determinants Now we multiply the determinants we found: \[ \text{det}(A) \times \text{det}(B) = 2 \times (-1) = -2 \] ### Final Answer The product of the determinants is: \[ \boxed{-2} \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    MODERN PUBLICATION|Exercise FREQUENTLY ASKED QUESTIONS|17 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Examples (FREQUENCY ASKED QUESTIONS)|28 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos

Similar Questions

Explore conceptually related problems

Find the inverse of the matrix : A=[{:(0,1,2),(0,1,1),(1,0,2):}]

The cofactor of the element '4' in the determinant |(1,3,5,1),(2,3,4,2),(8,0,1,1),(0,2,1,1)| is

Evaluate the following determinants by two method : |{:(1,2,4),(-1,3,0),(4,1,0):}|

if [{:(1,2,a),(0,1,4),(0,0,1):}]=[{:(1,18,2007),(0,1,36),(0,0,1):}] then find the value of n

Find the product of [(2,1),(3,2),(-1,1)][(1,0,1),(-1,2,1)]

Evalute the determinants in queations 1 and 2 : If A=|{:(1,0,1),(0,1,2),(0,0,4):}|

If A^(-1)=[{:(,1,-1,0),(,0,-2,1),(,0,0,-1):}] then

for what values of x: [1" "2" "1][{:(1,2,0),(2,0,1),(1,0,2):}][{:(0),(2),(x):}]=0?

For the following relation R = {(0,0),(0,1),(1,1),(2,1),(2,2),(2,0),(1,0), (0,2),(0,1) }