Home
Class 12
MATHS
Using Cramer's Rule , solve the followin...

Using Cramer's Rule , solve the following system of equations :
`{:(3x-4y+5z=-6),(x+y-2z=-1),(2x+3y+z=5):}`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the system of equations using Cramer's Rule, we will follow these steps: Given equations: 1. \(3x - 4y + 5z = -6\) (Equation 1) 2. \(x + y - 2z = -1\) (Equation 2) 3. \(2x + 3y + z = 5\) (Equation 3) ### Step 1: Write the system in standard form We already have the equations in the standard form \(Ax + By + Cz = D\). ### Step 2: Identify coefficients From the equations, we can identify the coefficients: - For Equation 1: \(A_1 = 3\), \(B_1 = -4\), \(C_1 = 5\), \(D_1 = -6\) - For Equation 2: \(A_2 = 1\), \(B_2 = 1\), \(C_2 = -2\), \(D_2 = -1\) - For Equation 3: \(A_3 = 2\), \(B_3 = 3\), \(C_3 = 1\), \(D_3 = 5\) ### Step 3: Calculate the determinant \(\Delta\) \[ \Delta = \begin{vmatrix} A_1 & B_1 & C_1 \\ A_2 & B_2 & C_2 \\ A_3 & B_3 & C_3 \end{vmatrix} = \begin{vmatrix} 3 & -4 & 5 \\ 1 & 1 & -2 \\ 2 & 3 & 1 \end{vmatrix} \] Calculating the determinant: \[ \Delta = 3 \begin{vmatrix} 1 & -2 \\ 3 & 1 \end{vmatrix} - (-4) \begin{vmatrix} 1 & -2 \\ 2 & 1 \end{vmatrix} + 5 \begin{vmatrix} 1 & 1 \\ 2 & 3 \end{vmatrix} \] Calculating the smaller determinants: 1. \(\begin{vmatrix} 1 & -2 \\ 3 & 1 \end{vmatrix} = (1)(1) - (-2)(3) = 1 + 6 = 7\) 2. \(\begin{vmatrix} 1 & -2 \\ 2 & 1 \end{vmatrix} = (1)(1) - (-2)(2) = 1 + 4 = 5\) 3. \(\begin{vmatrix} 1 & 1 \\ 2 & 3 \end{vmatrix} = (1)(3) - (1)(2) = 3 - 2 = 1\) Now substituting back: \[ \Delta = 3(7) + 4(5) + 5(1) = 21 + 20 + 5 = 46 \] ### Step 4: Calculate \(\Delta_x\) \[ \Delta_x = \begin{vmatrix} D_1 & B_1 & C_1 \\ D_2 & B_2 & C_2 \\ D_3 & B_3 & C_3 \end{vmatrix} = \begin{vmatrix} -6 & -4 & 5 \\ -1 & 1 & -2 \\ 5 & 3 & 1 \end{vmatrix} \] Calculating \(\Delta_x\): \[ \Delta_x = -6 \begin{vmatrix} 1 & -2 \\ 3 & 1 \end{vmatrix} - (-4) \begin{vmatrix} -1 & -2 \\ 5 & 1 \end{vmatrix} + 5 \begin{vmatrix} -1 & 1 \\ 5 & 3 \end{vmatrix} \] Calculating the smaller determinants: 1. \(\begin{vmatrix} 1 & -2 \\ 3 & 1 \end{vmatrix} = 7\) (as calculated before) 2. \(\begin{vmatrix} -1 & -2 \\ 5 & 1 \end{vmatrix} = (-1)(1) - (-2)(5) = -1 + 10 = 9\) 3. \(\begin{vmatrix} -1 & 1 \\ 5 & 3 \end{vmatrix} = (-1)(3) - (1)(5) = -3 - 5 = -8\) Now substituting back: \[ \Delta_x = -6(7) + 4(9) + 5(-8) = -42 + 36 - 40 = -46 \] ### Step 5: Calculate \(\Delta_y\) \[ \Delta_y = \begin{vmatrix} A_1 & D_1 & C_1 \\ A_2 & D_2 & C_2 \\ A_3 & D_3 & C_3 \end{vmatrix} = \begin{vmatrix} 3 & -6 & 5 \\ 1 & -1 & -2 \\ 2 & 5 & 1 \end{vmatrix} \] Calculating \(\Delta_y\): \[ \Delta_y = 3 \begin{vmatrix} -1 & -2 \\ 5 & 1 \end{vmatrix} - (-6) \begin{vmatrix} 1 & -2 \\ 2 & 1 \end{vmatrix} + 5 \begin{vmatrix} 1 & -1 \\ 2 & 5 \end{vmatrix} \] Calculating the smaller determinants: 1. \(\begin{vmatrix} -1 & -2 \\ 5 & 1 \end{vmatrix} = 9\) (as calculated before) 2. \(\begin{vmatrix} 1 & -2 \\ 2 & 1 \end{vmatrix} = 5\) (as calculated before) 3. \(\begin{vmatrix} 1 & -1 \\ 2 & 5 \end{vmatrix} = (1)(5) - (-1)(2) = 5 + 2 = 7\) Now substituting back: \[ \Delta_y = 3(9) + 6(5) + 5(7) = 27 + 30 + 35 = 92 \] ### Step 6: Calculate \(\Delta_z\) \[ \Delta_z = \begin{vmatrix} A_1 & B_1 & D_1 \\ A_2 & B_2 & D_2 \\ A_3 & B_3 & D_3 \end{vmatrix} = \begin{vmatrix} 3 & -4 & -6 \\ 1 & 1 & -1 \\ 2 & 3 & 5 \end{vmatrix} \] Calculating \(\Delta_z\): \[ \Delta_z = 3 \begin{vmatrix} 1 & -1 \\ 3 & 5 \end{vmatrix} - (-4) \begin{vmatrix} 1 & -1 \\ 2 & 5 \end{vmatrix} - 6 \begin{vmatrix} 1 & 1 \\ 2 & 3 \end{vmatrix} \] Calculating the smaller determinants: 1. \(\begin{vmatrix} 1 & -1 \\ 3 & 5 \end{vmatrix} = (1)(5) - (-1)(3) = 5 + 3 = 8\) 2. \(\begin{vmatrix} 1 & -1 \\ 2 & 5 \end{vmatrix} = (1)(5) - (-1)(2) = 5 + 2 = 7\) 3. \(\begin{vmatrix} 1 & 1 \\ 2 & 3 \end{vmatrix} = (1)(3) - (1)(2) = 3 - 2 = 1\) Now substituting back: \[ \Delta_z = 3(8) + 4(7) - 6(1) = 24 + 28 - 6 = 46 \] ### Step 7: Calculate values of \(x\), \(y\), and \(z\) Using Cramer's Rule: \[ x = \frac{\Delta_x}{\Delta} = \frac{-46}{46} = -1 \] \[ y = \frac{\Delta_y}{\Delta} = \frac{92}{46} = 2 \] \[ z = \frac{\Delta_z}{\Delta} = \frac{46}{46} = 1 \] ### Final Solution Thus, the solution to the system of equations is: \[ x = -1, \quad y = 2, \quad z = 1 \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    MODERN PUBLICATION|Exercise FREQUENTLY ASKED QUESTIONS|17 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Examples (FREQUENCY ASKED QUESTIONS)|28 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos

Similar Questions

Explore conceptually related problems

Using Cramer's Rule , solve the following system of equations : 3x-2y=5 , x-3y=-3

Solve the following system of equations 3x-4y+5z=0,x+y-2z=0,2x+3y+z=0

Solve the following system of equations: 2x-3y+5z=11, 5x+2y-7z=-12, -4x+3y+z=5

Using matrices,solve the following system of equations: 2x-3y+5z=11,3x+2y-4z=-5,x+y-2z=-3

Using matrices,solve the following system of equations: 3x-y+z=5 ,2x-2y+3z=7,x+y-z=-1

Using matrices solve the following system of linear equations: {(2x+3y+10z=4),(4x-6y+5z=1),(6x+9y-20z=2):}.

Using matrices,solve the following system of equations: 2x+3y+3z=5;x-2y+z=-4;3x-y-2z=3

Using matrices,solve the following system of equations: x-y+z=4;2x+y-3z=0;x+y+z=2

Use matrix to solve the following system of equations. x+y+z=6 x-y+z=2 2x+y-z=1

Using matrices, solve the following system of equations for x,y and z. 3x-2y+3z=8 , 2x+y-z=1 , 4x-3y+2z=4