Home
Class 12
MATHS
Find the value of 'x' if : |{:(2x,3),(...

Find the value of 'x' if :
`|{:(2x,3),(5,2):}|=|{:(16,3),(5,2):}|`, `x gt 0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( | \begin{pmatrix} 2x & 3 \\ 5 & 2 \end{pmatrix} | = | \begin{pmatrix} 16 & 3 \\ 5 & 2 \end{pmatrix} | \), we will calculate the determinants of both matrices and set them equal to each other. ### Step 1: Calculate the determinant of the first matrix The determinant of a 2x2 matrix \( \begin{pmatrix} a & b \\ c & d \end{pmatrix} \) is given by the formula: \[ |A| = ad - bc \] For the matrix \( \begin{pmatrix} 2x & 3 \\ 5 & 2 \end{pmatrix} \): - \( a = 2x \) - \( b = 3 \) - \( c = 5 \) - \( d = 2 \) Calculating the determinant: \[ | \begin{pmatrix} 2x & 3 \\ 5 & 2 \end{pmatrix} | = (2x)(2) - (3)(5) = 4x - 15 \] ### Step 2: Calculate the determinant of the second matrix For the matrix \( \begin{pmatrix} 16 & 3 \\ 5 & 2 \end{pmatrix} \): - \( a = 16 \) - \( b = 3 \) - \( c = 5 \) - \( d = 2 \) Calculating the determinant: \[ | \begin{pmatrix} 16 & 3 \\ 5 & 2 \end{pmatrix} | = (16)(2) - (3)(5) = 32 - 15 = 17 \] ### Step 3: Set the determinants equal to each other Now we set the two determinants equal to each other: \[ 4x - 15 = 17 \] ### Step 4: Solve for \( x \) To find \( x \), we will isolate \( x \): \[ 4x - 15 + 15 = 17 + 15 \] \[ 4x = 32 \] \[ x = \frac{32}{4} = 8 \] ### Step 5: Verify the condition \( x > 0 \) Since \( x = 8 \) and \( 8 > 0 \), the condition is satisfied. ### Final Answer The value of \( x \) is \( 8 \). ---
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    MODERN PUBLICATION|Exercise Exercise 4(b) (SHORT ANSWER TYPE QUESTIONS)|11 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Exercise 4(b) (LONG ANSWER TYPE QUESTIONS (I))|19 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Examples (QUESTIONS FROM NCERT EXAMPLAR|4 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos

Similar Questions

Explore conceptually related problems

Find the value of' x if : |[2,3],[4,5]|=|[x,3],[2x,5]|

Find the value of 5x^2-3x+7 at x=0

Find the value of x and y- 2x+3y=0 3x+4y=5

Find the value of x is abs([2,3],[4,5])=abs([x,3],[2x,5])

Find the value of x, if |[(3+x), 5, 2],[1, (7+x), 6], [2, 5, (3+x)]| = 0

If x=-3 find the value of 4x^2-5x+3

Find the value of x: 0.5x-(0.8-0.2x) = 0.2-0.3x

MODERN PUBLICATION-DETERMINANTS-Exercise 4(a) (SHORT ANSWER TYPE QUESTIONS)
  1. Evalute the determinants in queations 1 and 2 : Find the values of x...

    Text Solution

    |

  2. Evalute the determinants in queations 1 and 2 : Find the values of x...

    Text Solution

    |

  3. Solve the equation: |[3,x],[x,1]|=|[3,2],[4,1]|

    Text Solution

    |

  4. Find the value of 'x' if : |{:(3,x),(x,1):}|=|{:(5,2),(4,-1):}|

    Text Solution

    |

  5. Find the value of 'x' if : |{:(2x,3),(5,2):}|=|{:(16,3),(5,2):}|, x ...

    Text Solution

    |

  6. if |(x+1,x-1),(x-3,x+2)|= |(4,-1),(1,3)|. find the value of x.

    Text Solution

    |

  7. Find the value of 'x' if : |{:(-1,2),(4,8):}|=|{:(2,x),(x,-4):}|

    Text Solution

    |

  8. If |xx1x|=|3 4 1 2|, write the positive value of xdot

    Text Solution

    |

  9. If A=[{:(1,3),(4,1):}], then find |3A'|.

    Text Solution

    |

  10. |[3,-1,-2],[ 0, 0,-1],[ 3,-5, 0]|

    Text Solution

    |

  11. Write the minor and cofactor of each element of second column in the f...

    Text Solution

    |

  12. Evalute the determinants : (i) |{:(3,-1,-2),(0,0,1),(3,-5,0):}| (i...

    Text Solution

    |

  13. Evalute the determinants : (i) |{:(3,-1,-2),(0,0,1),(3,-5,0):}| (i...

    Text Solution

    |

  14. Evaluate the following determinants : |{:(3,-4,5),(1,1,-2),(2,3,1):}...

    Text Solution

    |

  15. Evaluate the following determinants by two method : |{:(1,2,4),(-1,3...

    Text Solution

    |

  16. Evaluate the following determinants by two method : |{:(0,2,0),(2,3,...

    Text Solution

    |

  17. Evalute the determinants in queations 1 and 2 : If A = |{:(1,1,-2),(...

    Text Solution

    |

  18. If A=[{:(2,1,1),(1,2,1),(1,1,2):}], then show that : |4A|=64|A|.

    Text Solution

    |

  19. |(1!,2!,3!),(2!,3!,4!),(3!,4!,5!)|=?

    Text Solution

    |

  20. If |{:(x+1,1,1),(1,x+1,1),(-1,1,x+1):}|=0, find the value of 'x'.

    Text Solution

    |