Home
Class 12
MATHS
Find the value of 'x' if : |{:(-1,2),(...

Find the value of 'x' if :
`|{:(-1,2),(4,8):}|=|{:(2,x),(x,-4):}|`

Text Solution

AI Generated Solution

The correct Answer is:
To solve for the value of \( x \) in the equation \( | \begin{pmatrix} -1 & 2 \\ 4 & 8 \end{pmatrix} | = | \begin{pmatrix} 2 & x \\ x & -4 \end{pmatrix} | \), we will calculate the determinants of both matrices and set them equal to each other. ### Step 1: Calculate the determinant of the left-hand side (LHS) The determinant of a 2x2 matrix \( \begin{pmatrix} a & b \\ c & d \end{pmatrix} \) is calculated using the formula: \[ \text{det} = ad - bc \] For the LHS matrix \( \begin{pmatrix} -1 & 2 \\ 4 & 8 \end{pmatrix} \): \[ \text{det} = (-1)(8) - (2)(4) = -8 - 8 = -16 \] ### Step 2: Calculate the determinant of the right-hand side (RHS) For the RHS matrix \( \begin{pmatrix} 2 & x \\ x & -4 \end{pmatrix} \): \[ \text{det} = (2)(-4) - (x)(x) = -8 - x^2 \] ### Step 3: Set the determinants equal to each other Now we set the LHS equal to the RHS: \[ -16 = -8 - x^2 \] ### Step 4: Solve for \( x^2 \) To isolate \( x^2 \), we first add 8 to both sides: \[ -16 + 8 = -x^2 \] \[ -8 = -x^2 \] Now, multiply both sides by -1: \[ 8 = x^2 \] ### Step 5: Take the square root of both sides Taking the square root gives us: \[ x = \pm \sqrt{8} \] We can simplify \( \sqrt{8} \): \[ x = \pm 2\sqrt{2} \] ### Final Answer Thus, the values of \( x \) are: \[ x = 2\sqrt{2} \quad \text{or} \quad x = -2\sqrt{2} \] ---
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    MODERN PUBLICATION|Exercise Exercise 4(b) (SHORT ANSWER TYPE QUESTIONS)|11 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Exercise 4(b) (LONG ANSWER TYPE QUESTIONS (I))|19 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Examples (QUESTIONS FROM NCERT EXAMPLAR|4 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos

Similar Questions

Explore conceptually related problems

Find the value of x if 2^x -2^(x-1) = 4

Find the value of x if 2x+8/3=1/4x+5

Find the value of x if (14x-4):(8x-1)=(3x+8):(9x+5)

Q.7: Find the value of x: x/2+x/4=1

The value of x for which |{:(x,2,2),(3,x,2),(3,3,x):}|+|{:(1-x,2,4),(2,4-x,8),(4,8,16-x):}|gt33 is

Find the value of x: |[8,3],[4,x]|=|[x,2],[2,4]|

Find the value of x if |[1+x,1-x,1],[2,4+x,3],[-1,1,2]|=0

Find the value of x : 2(x-1) - 3( x -3 ) = 5 ( x -5 ) - 4 ( x - 8 )

MODERN PUBLICATION-DETERMINANTS-Exercise 4(a) (SHORT ANSWER TYPE QUESTIONS)
  1. Evalute the determinants in queations 1 and 2 : Find the values of x...

    Text Solution

    |

  2. Evalute the determinants in queations 1 and 2 : Find the values of x...

    Text Solution

    |

  3. Solve the equation: |[3,x],[x,1]|=|[3,2],[4,1]|

    Text Solution

    |

  4. Find the value of 'x' if : |{:(3,x),(x,1):}|=|{:(5,2),(4,-1):}|

    Text Solution

    |

  5. Find the value of 'x' if : |{:(2x,3),(5,2):}|=|{:(16,3),(5,2):}|, x ...

    Text Solution

    |

  6. if |(x+1,x-1),(x-3,x+2)|= |(4,-1),(1,3)|. find the value of x.

    Text Solution

    |

  7. Find the value of 'x' if : |{:(-1,2),(4,8):}|=|{:(2,x),(x,-4):}|

    Text Solution

    |

  8. If |xx1x|=|3 4 1 2|, write the positive value of xdot

    Text Solution

    |

  9. If A=[{:(1,3),(4,1):}], then find |3A'|.

    Text Solution

    |

  10. |[3,-1,-2],[ 0, 0,-1],[ 3,-5, 0]|

    Text Solution

    |

  11. Write the minor and cofactor of each element of second column in the f...

    Text Solution

    |

  12. Evalute the determinants : (i) |{:(3,-1,-2),(0,0,1),(3,-5,0):}| (i...

    Text Solution

    |

  13. Evalute the determinants : (i) |{:(3,-1,-2),(0,0,1),(3,-5,0):}| (i...

    Text Solution

    |

  14. Evaluate the following determinants : |{:(3,-4,5),(1,1,-2),(2,3,1):}...

    Text Solution

    |

  15. Evaluate the following determinants by two method : |{:(1,2,4),(-1,3...

    Text Solution

    |

  16. Evaluate the following determinants by two method : |{:(0,2,0),(2,3,...

    Text Solution

    |

  17. Evalute the determinants in queations 1 and 2 : If A = |{:(1,1,-2),(...

    Text Solution

    |

  18. If A=[{:(2,1,1),(1,2,1),(1,1,2):}], then show that : |4A|=64|A|.

    Text Solution

    |

  19. |(1!,2!,3!),(2!,3!,4!),(3!,4!,5!)|=?

    Text Solution

    |

  20. If |{:(x+1,1,1),(1,x+1,1),(-1,1,x+1):}|=0, find the value of 'x'.

    Text Solution

    |