Home
Class 12
MATHS
If A=[{:(1,3),(4,1):}], then find |3A'|....

If `A=[{:(1,3),(4,1):}]`, then find `|3A'|`.

Text Solution

AI Generated Solution

The correct Answer is:
To find \( |3A'| \), we will follow these steps: ### Step 1: Define the Matrix \( A \) The given matrix \( A \) is: \[ A = \begin{pmatrix} 1 & 3 \\ 4 & 1 \end{pmatrix} \] ### Step 2: Find the Transpose of Matrix \( A \) The transpose of a matrix \( A \), denoted as \( A' \), is obtained by swapping the rows and columns. Thus, \[ A' = \begin{pmatrix} 1 & 4 \\ 3 & 1 \end{pmatrix} \] ### Step 3: Calculate the Determinant of \( A' \) The determinant of a \( 2 \times 2 \) matrix \( \begin{pmatrix} a & b \\ c & d \end{pmatrix} \) is calculated using the formula \( ad - bc \). For our matrix \( A' \): \[ |A'| = (1 \cdot 1) - (4 \cdot 3) = 1 - 12 = -11 \] ### Step 4: Use the Property of Determinants We know that if \( k \) is a constant and \( A \) is an \( n \times n \) matrix, then: \[ |kA| = k^n |A| \] In our case, \( k = 3 \) and \( n = 2 \) (since \( A' \) is a \( 2 \times 2 \) matrix). Therefore: \[ |3A'| = 3^2 |A'| = 9 |A'| \] ### Step 5: Substitute the Determinant of \( A' \) Now we substitute the value of \( |A'| \) we calculated in Step 3: \[ |3A'| = 9 \cdot (-11) = -99 \] ### Final Answer Thus, the value of \( |3A'| \) is: \[ \boxed{-99} \] ---
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    MODERN PUBLICATION|Exercise Exercise 4(b) (SHORT ANSWER TYPE QUESTIONS)|11 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Exercise 4(b) (LONG ANSWER TYPE QUESTIONS (I))|19 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Examples (QUESTIONS FROM NCERT EXAMPLAR|4 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos

Similar Questions

Explore conceptually related problems

If A = ({:(4, 3), (-2, 1):}) , then find A + 10 A^(-1),

If A=[[2,-3],[3,4]], then find A^(-1)

If A=[{:(1,3,3),(1,4,3),(1,3,4):}] , verify A.(adj.A)=|A|I and find A^(-1) .

If A=[(3,-4),(1,-1)] then find tr. (A^(2012)) .

If A=[(1,3),(4,2)],B=[(4,1),(-6,3)] and C=[(1,3),(0,-5)] , then find A+B+C ?

If A=[[3,2],[-1,4]] then find |A^(-1)| = ?

If A = [(1,2),(3,-2),(-1,0)]and B = [(1,3,2),(4,-1,3)] then find the order of AB.

If A{:[(1,2,3,5,6),(4,-1,2,-3,1)]:}andB={:[(5,3),(2,1),(-3,5),(4,1),(1,2)]:} , then find AB and BA.

If A = [(0,4,3),(1,-3,-3),(-1,4,4)] , then find A^(2) and hence find A^(-1)

Find the inverse of the matrix A=[{:(1,3,3),(1,4,3),(1,3,4):}] by using column transformations.

MODERN PUBLICATION-DETERMINANTS-Exercise 4(a) (SHORT ANSWER TYPE QUESTIONS)
  1. Evalute the determinants in queations 1 and 2 : Find the values of x...

    Text Solution

    |

  2. Evalute the determinants in queations 1 and 2 : Find the values of x...

    Text Solution

    |

  3. Solve the equation: |[3,x],[x,1]|=|[3,2],[4,1]|

    Text Solution

    |

  4. Find the value of 'x' if : |{:(3,x),(x,1):}|=|{:(5,2),(4,-1):}|

    Text Solution

    |

  5. Find the value of 'x' if : |{:(2x,3),(5,2):}|=|{:(16,3),(5,2):}|, x ...

    Text Solution

    |

  6. if |(x+1,x-1),(x-3,x+2)|= |(4,-1),(1,3)|. find the value of x.

    Text Solution

    |

  7. Find the value of 'x' if : |{:(-1,2),(4,8):}|=|{:(2,x),(x,-4):}|

    Text Solution

    |

  8. If |xx1x|=|3 4 1 2|, write the positive value of xdot

    Text Solution

    |

  9. If A=[{:(1,3),(4,1):}], then find |3A'|.

    Text Solution

    |

  10. |[3,-1,-2],[ 0, 0,-1],[ 3,-5, 0]|

    Text Solution

    |

  11. Write the minor and cofactor of each element of second column in the f...

    Text Solution

    |

  12. Evalute the determinants : (i) |{:(3,-1,-2),(0,0,1),(3,-5,0):}| (i...

    Text Solution

    |

  13. Evalute the determinants : (i) |{:(3,-1,-2),(0,0,1),(3,-5,0):}| (i...

    Text Solution

    |

  14. Evaluate the following determinants : |{:(3,-4,5),(1,1,-2),(2,3,1):}...

    Text Solution

    |

  15. Evaluate the following determinants by two method : |{:(1,2,4),(-1,3...

    Text Solution

    |

  16. Evaluate the following determinants by two method : |{:(0,2,0),(2,3,...

    Text Solution

    |

  17. Evalute the determinants in queations 1 and 2 : If A = |{:(1,1,-2),(...

    Text Solution

    |

  18. If A=[{:(2,1,1),(1,2,1),(1,1,2):}], then show that : |4A|=64|A|.

    Text Solution

    |

  19. |(1!,2!,3!),(2!,3!,4!),(3!,4!,5!)|=?

    Text Solution

    |

  20. If |{:(x+1,1,1),(1,x+1,1),(-1,1,x+1):}|=0, find the value of 'x'.

    Text Solution

    |