Home
Class 12
MATHS
|[3,-1,-2],[ 0, 0,-1],[ 3,-5, 0]|...

`|[3,-1,-2],[ 0, 0,-1],[ 3,-5, 0]|`

Text Solution

Verified by Experts

The correct Answer is:
`-12`
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    MODERN PUBLICATION|Exercise Exercise 4(b) (SHORT ANSWER TYPE QUESTIONS)|11 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Exercise 4(b) (LONG ANSWER TYPE QUESTIONS (I))|19 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Examples (QUESTIONS FROM NCERT EXAMPLAR|4 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos

Similar Questions

Explore conceptually related problems

If A=[[-3,1,2],[0,0,1],[-3,5,0]] ,then 8|A|

If A^(-1)=[[1,-1, 2],[0, 3,1],[ 0 ,0,-1/3]] , then |A|=-1 b. adj A=[[-1, 1 ,2],[ 0,-3,-1],[ 0, 0, 1/3]] c. A=[[1, 1/3, 7 ],[0, 1/3, 1],[0 ,0,-3]] d. A =[[1,-1/3,-7],[ 0,-3, 0],[ 0, 0, 1]]

Show that(i) [[5,-1],[ 6 ,7]][[2, 1],[ 3 ,4]]!=[[2, 1],[ 3, 4]][[5,-1],[ 6, 7]] (ii) [[1, 2, 3],[ 0, 1, 0],[ 1, 1, 0]][[-1, 1, 0],[ 0,-1, 1],[ 2, 3, 4]]!=[[-1, 1, 0],[ 0,-1, 1],[ 2, 3, 4]][[1 ,2 ,3],[ 0, 1, 0],[ 1, 1, 0]]

Compute the following: [[2,3,1],[5,-1,2],[0,3,5]]+[[1,-2,3],[-3,1,5],[6,2,0]]

If A=[[1,0,-2],[3,-1,0],[-2,1,1]],B=[[0,5,-4],[-2,1,3],[-1,0,2]] and C=[[1,5,2],[-1,1,0],[0,-1,1]] verify that A(B-C)=(AB-AC)

If [[1,x,1]] [[1,3,2],[0,5,1],[0,2,0]][[1],[1],[x]]=0 then x is

Evaluate : [[1,3,5]][[1,0,3],[2,0,1],[0,1,2]][[1],[4],[6]]

If A=[[0,0,1],[0,1,0],[1,0,0]],B=[[0,5,7],[0,0,6],[0,0,0]] and C=[[-1,3,5],[1,-3,-5],[-1,3,5]] , show that A^2=I

If A=[[0,0,1],[0,1,0],[1,0,0]],B=[[0,5,7],[0,0,6],[0,0,0]] and C=[[-1,3,5],[1,-3,-5],[-1,3,5]] , show that C^2=C

If A=[[0,0,1],[0,1,0],[1,0,0]],B=[[0,5,7],[0,0,6],[0,0,0]] and C=[[-1,3,5],[1,-3,-5],[-1,3,5]] , show that B^4=O

MODERN PUBLICATION-DETERMINANTS-Exercise 4(a) (SHORT ANSWER TYPE QUESTIONS)
  1. Evalute the determinants in queations 1 and 2 : Find the values of x...

    Text Solution

    |

  2. Evalute the determinants in queations 1 and 2 : Find the values of x...

    Text Solution

    |

  3. Solve the equation: |[3,x],[x,1]|=|[3,2],[4,1]|

    Text Solution

    |

  4. Find the value of 'x' if : |{:(3,x),(x,1):}|=|{:(5,2),(4,-1):}|

    Text Solution

    |

  5. Find the value of 'x' if : |{:(2x,3),(5,2):}|=|{:(16,3),(5,2):}|, x ...

    Text Solution

    |

  6. if |(x+1,x-1),(x-3,x+2)|= |(4,-1),(1,3)|. find the value of x.

    Text Solution

    |

  7. Find the value of 'x' if : |{:(-1,2),(4,8):}|=|{:(2,x),(x,-4):}|

    Text Solution

    |

  8. If |xx1x|=|3 4 1 2|, write the positive value of xdot

    Text Solution

    |

  9. If A=[{:(1,3),(4,1):}], then find |3A'|.

    Text Solution

    |

  10. |[3,-1,-2],[ 0, 0,-1],[ 3,-5, 0]|

    Text Solution

    |

  11. Write the minor and cofactor of each element of second column in the f...

    Text Solution

    |

  12. Evalute the determinants : (i) |{:(3,-1,-2),(0,0,1),(3,-5,0):}| (i...

    Text Solution

    |

  13. Evalute the determinants : (i) |{:(3,-1,-2),(0,0,1),(3,-5,0):}| (i...

    Text Solution

    |

  14. Evaluate the following determinants : |{:(3,-4,5),(1,1,-2),(2,3,1):}...

    Text Solution

    |

  15. Evaluate the following determinants by two method : |{:(1,2,4),(-1,3...

    Text Solution

    |

  16. Evaluate the following determinants by two method : |{:(0,2,0),(2,3,...

    Text Solution

    |

  17. Evalute the determinants in queations 1 and 2 : If A = |{:(1,1,-2),(...

    Text Solution

    |

  18. If A=[{:(2,1,1),(1,2,1),(1,1,2):}], then show that : |4A|=64|A|.

    Text Solution

    |

  19. |(1!,2!,3!),(2!,3!,4!),(3!,4!,5!)|=?

    Text Solution

    |

  20. If |{:(x+1,1,1),(1,x+1,1),(-1,1,x+1):}|=0, find the value of 'x'.

    Text Solution

    |