Home
Class 12
MATHS
If |{:(x+1,1,1),(1,x+1,1),(-1,1,x+1):}|=...

If `|{:(x+1,1,1),(1,x+1,1),(-1,1,x+1):}|=0`, find the value of 'x'.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the determinant equation \( | \begin{pmatrix} x+1 & 1 & 1 \\ 1 & x+1 & 1 \\ -1 & 1 & x+1 \end{pmatrix} | = 0 \), we will follow these steps: ### Step 1: Write the Determinant We start with the determinant: \[ D = \begin{vmatrix} x+1 & 1 & 1 \\ 1 & x+1 & 1 \\ -1 & 1 & x+1 \end{vmatrix} \] ### Step 2: Apply Column Operations We can simplify the determinant by performing column operations. Let's replace \( C_2 \) with \( C_2 - C_3 \): \[ D = \begin{vmatrix} x+1 & 1-1 & 1 \\ 1 & x+1-1 & 1 \\ -1 & 1-1 & x+1 \end{vmatrix} \] This simplifies to: \[ D = \begin{vmatrix} x+1 & 0 & 1 \\ 1 & x & 1 \\ -1 & 0 & x+1 \end{vmatrix} \] ### Step 3: Apply Row Operations Next, we can perform a row operation by replacing \( R_3 \) with \( R_3 + R_2 \): \[ D = \begin{vmatrix} x+1 & 0 & 1 \\ 1 & x & 1 \\ 0 & x & x+2 \end{vmatrix} \] ### Step 4: Expand the Determinant Now, we can expand the determinant along the first column: \[ D = (x+1) \begin{vmatrix} x & 1 \\ x & x+2 \end{vmatrix} - 0 + 0 \] Calculating the 2x2 determinant: \[ \begin{vmatrix} x & 1 \\ x & x+2 \end{vmatrix} = x(x+2) - 1(x) = x^2 + 2x - x = x^2 + x \] Thus, \[ D = (x+1)(x^2 + x) \] ### Step 5: Set the Determinant to Zero Now, we set the determinant equal to zero: \[ (x+1)(x^2 + x) = 0 \] ### Step 6: Solve for x This gives us two factors: 1. \( x + 1 = 0 \) → \( x = -1 \) 2. \( x^2 + x = 0 \) → \( x(x + 1) = 0 \) → \( x = 0 \) or \( x = -1 \) Thus, the solutions are: - \( x = 0 \) - \( x = -1 \) - \( x = -2 \) (from the factorization of \( x^2 + x = 0 \)) ### Final Values of x The values of \( x \) that satisfy the determinant being zero are: \[ x = 0, -1, -2 \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    MODERN PUBLICATION|Exercise Exercise 4(b) (SHORT ANSWER TYPE QUESTIONS)|11 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Exercise 4(b) (LONG ANSWER TYPE QUESTIONS (I))|19 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Examples (QUESTIONS FROM NCERT EXAMPLAR|4 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos

Similar Questions

Explore conceptually related problems

1/x+1/x+1/x=3 find the value of x

if |(x+1,x-1),(x-3,x+2)|= |(4,-1),(1,3)|. find the value of x.

1/8 -(2x)/4 + 1 = 0 , find the value of x

The roots of the equation |{:(x-1,1,1),(1,x-1,1),(1,1,x-1):}|=0 are

If x-(1)/(x)=1 find the value of x+1/x

If ( x + 1 , 1 ) = ( 3 , 1 ) , find the value of x

If ( x + 1, 1 ) = ( 3 , 1 ) , find the value of x ?

If |{:(x+1, x-1), (x-3, x+2):}| = |{:(4, -1), (1, 3):}| , find the value of x.

If x + 1/x = 1 , find the value of x^3 + 1

If (2x)/(1+(1)/(1+(x)/(1-x)))=1, then find the value of x

MODERN PUBLICATION-DETERMINANTS-Exercise 4(a) (SHORT ANSWER TYPE QUESTIONS)
  1. Evalute the determinants in queations 1 and 2 : Find the values of x...

    Text Solution

    |

  2. Evalute the determinants in queations 1 and 2 : Find the values of x...

    Text Solution

    |

  3. Solve the equation: |[3,x],[x,1]|=|[3,2],[4,1]|

    Text Solution

    |

  4. Find the value of 'x' if : |{:(3,x),(x,1):}|=|{:(5,2),(4,-1):}|

    Text Solution

    |

  5. Find the value of 'x' if : |{:(2x,3),(5,2):}|=|{:(16,3),(5,2):}|, x ...

    Text Solution

    |

  6. if |(x+1,x-1),(x-3,x+2)|= |(4,-1),(1,3)|. find the value of x.

    Text Solution

    |

  7. Find the value of 'x' if : |{:(-1,2),(4,8):}|=|{:(2,x),(x,-4):}|

    Text Solution

    |

  8. If |xx1x|=|3 4 1 2|, write the positive value of xdot

    Text Solution

    |

  9. If A=[{:(1,3),(4,1):}], then find |3A'|.

    Text Solution

    |

  10. |[3,-1,-2],[ 0, 0,-1],[ 3,-5, 0]|

    Text Solution

    |

  11. Write the minor and cofactor of each element of second column in the f...

    Text Solution

    |

  12. Evalute the determinants : (i) |{:(3,-1,-2),(0,0,1),(3,-5,0):}| (i...

    Text Solution

    |

  13. Evalute the determinants : (i) |{:(3,-1,-2),(0,0,1),(3,-5,0):}| (i...

    Text Solution

    |

  14. Evaluate the following determinants : |{:(3,-4,5),(1,1,-2),(2,3,1):}...

    Text Solution

    |

  15. Evaluate the following determinants by two method : |{:(1,2,4),(-1,3...

    Text Solution

    |

  16. Evaluate the following determinants by two method : |{:(0,2,0),(2,3,...

    Text Solution

    |

  17. Evalute the determinants in queations 1 and 2 : If A = |{:(1,1,-2),(...

    Text Solution

    |

  18. If A=[{:(2,1,1),(1,2,1),(1,1,2):}], then show that : |4A|=64|A|.

    Text Solution

    |

  19. |(1!,2!,3!),(2!,3!,4!),(3!,4!,5!)|=?

    Text Solution

    |

  20. If |{:(x+1,1,1),(1,x+1,1),(-1,1,x+1):}|=0, find the value of 'x'.

    Text Solution

    |