Home
Class 12
MATHS
By using properties of determinants, pro...

By using properties of determinants, prove the following: `|x+4 2x2x2xx+4 2x2x2xx+4|=(5x+4)(4-x)^2`

Text Solution

Verified by Experts

The correct Answer is:
`0`
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    MODERN PUBLICATION|Exercise Exercise 4(c ) (SHORT ANSWER TYPE QUESTIONS)|4 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Exercise 4(d) (SHORT ANSWER TYPE QUESTIONS)|4 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Exercise 4(b) (LONG ANSWER TYPE QUESTIONS (I))|19 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos

Similar Questions

Explore conceptually related problems

By using properties of determinants,prove the following ,2xdet[[x+4,2x,2x2x,x+4,2x2x,2x,x+4]]=(5x+4)(4-x)^(2)

By using properties of determinants. Show that: (i) |(x+4,2x,2x),(2x,x+4,2x),(2x,2x,x+4)|=(5x-4)(4-x)^2 (ii) |(y+k,y,y),(y,y+k,y),(y,y,y+k)|=k^2(3y+k)

Using properties of determinants, solve the following for x: |[x-2, 2x-3, 3x-4],[x-4, 2x-9, 3x-16],[ x-8, 2x-27, 3x-64]|=0

By using properties of determinants.Show that: det[[1,x,x^(2)x^(2),1,xx,x^(2),1]]=(1-x^(3))^(2)

|[x+4,2x,2x] , [2x,x+4,2x] , [2x,2x,x+4]|=(5x+4)(x-4)^2

Find each of the following products : (x^(3) - 2x^(2) + 5) xx (4x - 1)

det [[x + 4,2x, 2x2x, x + 4,2x2x, 2x, x + 4]]

Simplify each of the following x(x + 4) + 3x (2x^(2) - 1) + 4x^(2) + 4

MODERN PUBLICATION-DETERMINANTS-Exercise 4(b) (LONG ANSWER TYPE QUESTIONS (II))
  1. By using properties of determinants, prove the following: |x+4 2x2x...

    Text Solution

    |

  2. Prove: |x+4xxxx+4xxxx+4|=16(3x+4)

    Text Solution

    |

  3. Prove, using properties of determinants: |y+k y y y y+k y y y y+k|=k^...

    Text Solution

    |

  4. for x,x,z gt 0 Prove that |{:(1,,log(x)y,,log(x)z),(log(y)x,,1,,log(y)...

    Text Solution

    |

  5. Prove that |(1,a,a^2),(1,b,b^2),(1,c,c^2)|=(a-b)(b-c)(c-a)

    Text Solution

    |

  6. Prove that |(a,b-c,c+b),(a+c,b,c-a),(a-b,b+a,c)|=(a+b+c)(a^(2)+b^(2)...

    Text Solution

    |

  7. Prove the following : |{:(1,a,a),(a,1,a),(a,a,1):}|=(2a+1)(1-a)^(2)

    Text Solution

    |

  8. Prove that : |{:(1,x,x^(3)),(1,y,y^(3)),(1,z,z^(3)):}|

    Text Solution

    |

  9. Prove the following : |{:(1,1,1),(a,b,c),(bc,ca,ab):}|=(a-b)(b-c)(c-...

    Text Solution

    |

  10. |[1,a, bc] ,[1, b, ca], [1, c, ab]| =(a-b)(b-c)(c-a)

    Text Solution

    |

  11. Prove the following : |{:(bc,a,1),(ca,b,1),(ab,c,1):}|=(a-b)(b-c)(a-...

    Text Solution

    |

  12. Prove the following : |{:(a,b,c),(a^(2),b^(2),c^(2)),(bc,ca,ab):}|=|...

    Text Solution

    |

  13. Prove the following : |{:(a^(2),a,b+c),(b^(2),b,c+a),(c^(2),c,a+b):}...

    Text Solution

    |

  14. Prove that |{:(a,b,c),(a^(2),b^(2),c^(2)),(b+c,c+a,a+b):}|=(a-b)(b-c)(...

    Text Solution

    |

  15. Prove the following : |{:(x,x^(2),y+z),(y,y^(2),z+x),(z,z^(2),x+y):}...

    Text Solution

    |

  16. Prove the following : |{:(alpha,alpha^(2),beta+gamma),(beta,beta^(2)...

    Text Solution

    |

  17. |[a,b,c],[a-b,b-c,c-a],[b+c,c+a,a+b]|=a^3+b^3+c^3-3abc

    Text Solution

    |

  18. Evaluate the following: |[a^2+2a, 2a+1, 1],[2a+1, a+2, 1],[3,3,1]|

    Text Solution

    |

  19. Given : a^(2)+b^(2)+c^(2) =0 Prove the following : |{:(b^(2)+c^(2...

    Text Solution

    |

  20. |[1+a^2-b^2,2ab,-2b],[2ab,1-a^2+b^2,2a],[2b,-2a,1-a^2-b^2]|=(1+a^2+b^2...

    Text Solution

    |