Home
Class 12
MATHS
Prove: |x+4xxxx+4xxxx+4|=16(3x+4)...

Prove: `|x+4xxxx+4xxxx+4|=16(3x+4)`

Text Solution

Verified by Experts

The correct Answer is:
`xy`
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    MODERN PUBLICATION|Exercise Exercise 4(c ) (SHORT ANSWER TYPE QUESTIONS)|4 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Exercise 4(d) (SHORT ANSWER TYPE QUESTIONS)|4 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Exercise 4(b) (LONG ANSWER TYPE QUESTIONS (I))|19 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos

Similar Questions

Explore conceptually related problems

Prove: |(x+4,x,x),(x,x+4,x),(x,x,x+4)|=16(3x+4)

|[x+4,x,x] , [x,x+4,x] , [x,x,x+4]|=16(3x+4)

Solve the following determinant equations: |x+a b c a x+b c a b x+c|=0 (ii) |x+a xxxx+a xxxx+a| (iii) |3x-8 3 3 3 3x-8 3 3 3 3x-8|=0

(x^(4)-16)-:(x+2)

5(x-3)=4(3x-16)

If x^2- 4x + 4= 0 , then the value of 16(x^4-1/x^4) is यदि x^2- 4x + 4= 0 है, तो 16(x^4-1/x^4) का मान क्या होगा ?

The least value of the function f(x) = 4 + 4x + (16)/(x) is :

prove that cos x cos2x cos4x cos8x=(sin16x)/(16sin x)

MODERN PUBLICATION-DETERMINANTS-Exercise 4(b) (LONG ANSWER TYPE QUESTIONS (II))
  1. By using properties of determinants, prove the following: |x+4 2x2x...

    Text Solution

    |

  2. Prove: |x+4xxxx+4xxxx+4|=16(3x+4)

    Text Solution

    |

  3. Prove, using properties of determinants: |y+k y y y y+k y y y y+k|=k^...

    Text Solution

    |

  4. for x,x,z gt 0 Prove that |{:(1,,log(x)y,,log(x)z),(log(y)x,,1,,log(y)...

    Text Solution

    |

  5. Prove that |(1,a,a^2),(1,b,b^2),(1,c,c^2)|=(a-b)(b-c)(c-a)

    Text Solution

    |

  6. Prove that |(a,b-c,c+b),(a+c,b,c-a),(a-b,b+a,c)|=(a+b+c)(a^(2)+b^(2)...

    Text Solution

    |

  7. Prove the following : |{:(1,a,a),(a,1,a),(a,a,1):}|=(2a+1)(1-a)^(2)

    Text Solution

    |

  8. Prove that : |{:(1,x,x^(3)),(1,y,y^(3)),(1,z,z^(3)):}|

    Text Solution

    |

  9. Prove the following : |{:(1,1,1),(a,b,c),(bc,ca,ab):}|=(a-b)(b-c)(c-...

    Text Solution

    |

  10. |[1,a, bc] ,[1, b, ca], [1, c, ab]| =(a-b)(b-c)(c-a)

    Text Solution

    |

  11. Prove the following : |{:(bc,a,1),(ca,b,1),(ab,c,1):}|=(a-b)(b-c)(a-...

    Text Solution

    |

  12. Prove the following : |{:(a,b,c),(a^(2),b^(2),c^(2)),(bc,ca,ab):}|=|...

    Text Solution

    |

  13. Prove the following : |{:(a^(2),a,b+c),(b^(2),b,c+a),(c^(2),c,a+b):}...

    Text Solution

    |

  14. Prove that |{:(a,b,c),(a^(2),b^(2),c^(2)),(b+c,c+a,a+b):}|=(a-b)(b-c)(...

    Text Solution

    |

  15. Prove the following : |{:(x,x^(2),y+z),(y,y^(2),z+x),(z,z^(2),x+y):}...

    Text Solution

    |

  16. Prove the following : |{:(alpha,alpha^(2),beta+gamma),(beta,beta^(2)...

    Text Solution

    |

  17. |[a,b,c],[a-b,b-c,c-a],[b+c,c+a,a+b]|=a^3+b^3+c^3-3abc

    Text Solution

    |

  18. Evaluate the following: |[a^2+2a, 2a+1, 1],[2a+1, a+2, 1],[3,3,1]|

    Text Solution

    |

  19. Given : a^(2)+b^(2)+c^(2) =0 Prove the following : |{:(b^(2)+c^(2...

    Text Solution

    |

  20. |[1+a^2-b^2,2ab,-2b],[2ab,1-a^2+b^2,2a],[2b,-2a,1-a^2-b^2]|=(1+a^2+b^2...

    Text Solution

    |