Home
Class 12
MATHS
for x,x,z gt 0 Prove that |{:(1,,log(x)y...

for `x,x,z gt 0` Prove that `|{:(1,,log_(x)y,,log_(x)z),(log_(y)x,,1,,log_(y)z),(log_(z) x,,log_(z)y,,1):}| =0`

Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    MODERN PUBLICATION|Exercise Exercise 4(c ) (SHORT ANSWER TYPE QUESTIONS)|4 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Exercise 4(d) (SHORT ANSWER TYPE QUESTIONS)|4 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Exercise 4(b) (LONG ANSWER TYPE QUESTIONS (I))|19 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos

Similar Questions

Explore conceptually related problems

det[[log_(x)xyz,log_(x)y,log_(x)zlog_(y)xyz,1,log_(y)zlog_(z)xyz,log_(z)y,1]]=0

If x , y and z be greater than 1, then the value of |{:(1, log_(x)y, log_(x) z),(log_(y)x , 1 ,log_(y)z),(log_(z)x , log_z y , 1 ):}| =

For positive numbers x,y,s the numberical value of the determinant |{:(1,log_(x)y,log_(x)z),(log_(y)x,3,log_(y)z),(log_(z)x,log_(z)y,5):}| is

For positive numbers x, y and z, the numerical value of the determinant |{:(1,"log"_(x)y, "log"_(x)z),("log"_(y)x, 1, "log"_(y)z),("log"_(z)x, "log"_(z)y, 1):}| is……

For positive numbers x,y and z, the numerical value of the determinant det[[log_(x)y,log_(x)zlog_(y)x,1,log_(y)zlog_(z)x,log_(z)y,1]]

If x gt 0 , y gt 0 , z gt 0 , the least value of x^(log_(e)y-log_(e)z)+y^(log_(e)z-log_(e)x)+Z^(log_(e)x-log_(e)y) is

log_(x)x xx log_(y)y xx log_(z)z = ______

log_(x rarr n)-log_(a)y=a,log_(a)y-log_(a)z=b,log_(a)z-log_(a)x=c

The value of the determinant ,log_(a)((x)/(y)),log_(a)((y)/(z)),log_(a)((z)/(x))log_(b)((y)/(z)),log_(b)((z)/(x)),log_(b)((x)/(y))log_(c)((z)/(x)),log_(c)((x)/(y)),log_(c)((y)/(z))]|

MODERN PUBLICATION-DETERMINANTS-Exercise 4(b) (LONG ANSWER TYPE QUESTIONS (II))
  1. Prove: |x+4xxxx+4xxxx+4|=16(3x+4)

    Text Solution

    |

  2. Prove, using properties of determinants: |y+k y y y y+k y y y y+k|=k^...

    Text Solution

    |

  3. for x,x,z gt 0 Prove that |{:(1,,log(x)y,,log(x)z),(log(y)x,,1,,log(y)...

    Text Solution

    |

  4. Prove that |(1,a,a^2),(1,b,b^2),(1,c,c^2)|=(a-b)(b-c)(c-a)

    Text Solution

    |

  5. Prove that |(a,b-c,c+b),(a+c,b,c-a),(a-b,b+a,c)|=(a+b+c)(a^(2)+b^(2)...

    Text Solution

    |

  6. Prove the following : |{:(1,a,a),(a,1,a),(a,a,1):}|=(2a+1)(1-a)^(2)

    Text Solution

    |

  7. Prove that : |{:(1,x,x^(3)),(1,y,y^(3)),(1,z,z^(3)):}|

    Text Solution

    |

  8. Prove the following : |{:(1,1,1),(a,b,c),(bc,ca,ab):}|=(a-b)(b-c)(c-...

    Text Solution

    |

  9. |[1,a, bc] ,[1, b, ca], [1, c, ab]| =(a-b)(b-c)(c-a)

    Text Solution

    |

  10. Prove the following : |{:(bc,a,1),(ca,b,1),(ab,c,1):}|=(a-b)(b-c)(a-...

    Text Solution

    |

  11. Prove the following : |{:(a,b,c),(a^(2),b^(2),c^(2)),(bc,ca,ab):}|=|...

    Text Solution

    |

  12. Prove the following : |{:(a^(2),a,b+c),(b^(2),b,c+a),(c^(2),c,a+b):}...

    Text Solution

    |

  13. Prove that |{:(a,b,c),(a^(2),b^(2),c^(2)),(b+c,c+a,a+b):}|=(a-b)(b-c)(...

    Text Solution

    |

  14. Prove the following : |{:(x,x^(2),y+z),(y,y^(2),z+x),(z,z^(2),x+y):}...

    Text Solution

    |

  15. Prove the following : |{:(alpha,alpha^(2),beta+gamma),(beta,beta^(2)...

    Text Solution

    |

  16. |[a,b,c],[a-b,b-c,c-a],[b+c,c+a,a+b]|=a^3+b^3+c^3-3abc

    Text Solution

    |

  17. Evaluate the following: |[a^2+2a, 2a+1, 1],[2a+1, a+2, 1],[3,3,1]|

    Text Solution

    |

  18. Given : a^(2)+b^(2)+c^(2) =0 Prove the following : |{:(b^(2)+c^(2...

    Text Solution

    |

  19. |[1+a^2-b^2,2ab,-2b],[2ab,1-a^2+b^2,2a],[2b,-2a,1-a^2-b^2]|=(1+a^2+b^2...

    Text Solution

    |

  20. Prove the following : |{:(x,y,z),(x^(2),y^(2),z^(2)),(x^(3),y^(3),z^...

    Text Solution

    |