Home
Class 12
MATHS
Prove the following : |{:(a,b,c),(a^(2...

Prove the following :
`|{:(a,b,c),(a^(2),b^(2),c^(2)),(bc,ca,ab):}|=|{:(a,a^(2),bc),(b,b^(2),ca),(c,c^(2),ab):}|=(ab+bc+ca)(a-b)(b-c)(c-a)`.

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    MODERN PUBLICATION|Exercise Exercise 4(c ) (SHORT ANSWER TYPE QUESTIONS)|4 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Exercise 4(d) (SHORT ANSWER TYPE QUESTIONS)|4 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Exercise 4(b) (LONG ANSWER TYPE QUESTIONS (I))|19 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos

Similar Questions

Explore conceptually related problems

det[[a,a^(2),bcb,b^(2),cac,c^(2),ab]]=(a-b)(b-c)(c-a)(ab+bc+ca)

|(1/a,a^2,bc),(1/b,b^2,ca),(1/c,c^2,ab)|=........

If a+b+c=0 then prove the following. a^(2)+b^(2)+c^(2) = -2(bc+ca+ab)

Prove that |{:(1, a, a^(2)-bc),(1, b, b^(2)-ca), (1, c, c^(2)-ab):}|=0

The value of det[[a,b,ca^(2),b^(2),c^(2)bc,ca,ab]] equal to

Show that |((b+c)^2,a^2,bc),((c+a)^2,b^2,ca),((a+b)^2,c^2,ab)|=(a^2+b^2+c^2)(a+b+c)(a-b)(b-c)(c-a).

|[bc,ca,ab],[(b+c)^(2),(c+a)^(2),(a+b)^(2)],[a^(2),b^(2)c^(2)]|

Prove that : |{:(b^(2)c^(2),bc, b+c),(c^(2)a^(2),ca, c+a),(a^(2)b^(2),ab, a+b):}|=0

MODERN PUBLICATION-DETERMINANTS-Exercise 4(b) (LONG ANSWER TYPE QUESTIONS (II))
  1. |[1,a, bc] ,[1, b, ca], [1, c, ab]| =(a-b)(b-c)(c-a)

    Text Solution

    |

  2. Prove the following : |{:(bc,a,1),(ca,b,1),(ab,c,1):}|=(a-b)(b-c)(a-...

    Text Solution

    |

  3. Prove the following : |{:(a,b,c),(a^(2),b^(2),c^(2)),(bc,ca,ab):}|=|...

    Text Solution

    |

  4. Prove the following : |{:(a^(2),a,b+c),(b^(2),b,c+a),(c^(2),c,a+b):}...

    Text Solution

    |

  5. Prove that |{:(a,b,c),(a^(2),b^(2),c^(2)),(b+c,c+a,a+b):}|=(a-b)(b-c)(...

    Text Solution

    |

  6. Prove the following : |{:(x,x^(2),y+z),(y,y^(2),z+x),(z,z^(2),x+y):}...

    Text Solution

    |

  7. Prove the following : |{:(alpha,alpha^(2),beta+gamma),(beta,beta^(2)...

    Text Solution

    |

  8. |[a,b,c],[a-b,b-c,c-a],[b+c,c+a,a+b]|=a^3+b^3+c^3-3abc

    Text Solution

    |

  9. Evaluate the following: |[a^2+2a, 2a+1, 1],[2a+1, a+2, 1],[3,3,1]|

    Text Solution

    |

  10. Given : a^(2)+b^(2)+c^(2) =0 Prove the following : |{:(b^(2)+c^(2...

    Text Solution

    |

  11. |[1+a^2-b^2,2ab,-2b],[2ab,1-a^2+b^2,2a],[2b,-2a,1-a^2-b^2]|=(1+a^2+b^2...

    Text Solution

    |

  12. Prove the following : |{:(x,y,z),(x^(2),y^(2),z^(2)),(x^(3),y^(3),z^...

    Text Solution

    |

  13. [[x, x^2, yz],[y, y^2, zx],[z, z^2, xy]]=(x-y)(y-z)(z-x)(xy+yz+zx)

    Text Solution

    |

  14. Prove that : |{:(x+y+2z,x,y),(z,y+z+2x,y),(z,x,x+a+2y):}|=2(x+y+)^(3)

    Text Solution

    |

  15. Prove that |{:(b+c, c+a, a+b),(c+a, a+b,b+c),(a+b, b+c, c+a):}| =2(...

    Text Solution

    |

  16. Using properties of determinants, prove the following: |xx+y x+2y\...

    Text Solution

    |

  17. |[b+c, a,a] , [b,c+a,b] , [c,c,a+b]|=4abc

    Text Solution

    |

  18. Prove the following : |{:(2ab,a^(2),b^(2)),(a^(2),b^(2),2ab),(b^(2),...

    Text Solution

    |

  19. Prove the following : |(1,x,x^(2)-yz),(1,y,y^(2)-zx),(1,z,z^(2)-xy)|=...

    Text Solution

    |

  20. For any scalar p prove that =|xx^2 1+p x^3y y^2 1+p y^3z z^2 1+p z^3|=...

    Text Solution

    |