Home
Class 12
MATHS
Given : a^(2)+b^(2)+c^(2) =0 Prove the...

Given : ` a^(2)+b^(2)+c^(2) =0 `
Prove the following :
` |{:(b^(2)+c^(2),ab,ca),(ab,c^(2)+a^(2),bc),(ca,bc,a^(2)+b^(2)):}|=4a^(2)b^(2)c^(2)`

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    MODERN PUBLICATION|Exercise Exercise 4(c ) (SHORT ANSWER TYPE QUESTIONS)|4 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Exercise 4(d) (SHORT ANSWER TYPE QUESTIONS)|4 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Exercise 4(b) (LONG ANSWER TYPE QUESTIONS (I))|19 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos

Similar Questions

Explore conceptually related problems

|[b^(2)c^(2),bc,a-c],[c^(2)a^(2),ca,b-c],[a^(2)b^(2),ab,0]|=?

Prove that : |{:(b^(2)c^(2),bc, b+c),(c^(2)a^(2),ca, c+a),(a^(2)b^(2),ab, a+b):}|=0

Prove that |[-a^(2),ab,ac],[ba,-b^(2),bc],[ca,cb,-c^(2)]|=4a^(2)b^(2)c^(2)

Prove the following : |{:(a,b,c),(a^(2),b^(2),c^(2)),(bc,ca,ab):}|=|{:(a,a^(2),bc),(b,b^(2),ca),(c,c^(2),ab):}|=(ab+bc+ca)(a-b)(b-c)(c-a) .

|[bc,ca,ab],[(b+c)^(2),(c+a)^(2),(a+b)^(2)],[a^(2),b^(2)c^(2)]|

If a+b+c=0 then prove the following. (bc+ca+ab)^(2) =b^(2)c^(2) +c^(2)a^(2) +a^(2)b^(2)=(1)/(4) (a^(2) +b^(2) +c^(2))^(2)

Prove the identities: |[b^2+c^2,ab, ac],[ba,c^2+a^2,bc],[ca, cb ,a^2+b^2]|=4a^2b^2c^2

If a+b+c=0 then prove the following. a^(2)+b^(2)+c^(2) = -2(bc+ca+ab)

Prove that |[(a+b)^(2),ca,bc],[ca,(b+c)^(2),ab],[bc,ab,(c+a)^(2)]|=2abc(a+b+c)^(3)

MODERN PUBLICATION-DETERMINANTS-Exercise 4(b) (LONG ANSWER TYPE QUESTIONS (II))
  1. |[a,b,c],[a-b,b-c,c-a],[b+c,c+a,a+b]|=a^3+b^3+c^3-3abc

    Text Solution

    |

  2. Evaluate the following: |[a^2+2a, 2a+1, 1],[2a+1, a+2, 1],[3,3,1]|

    Text Solution

    |

  3. Given : a^(2)+b^(2)+c^(2) =0 Prove the following : |{:(b^(2)+c^(2...

    Text Solution

    |

  4. |[1+a^2-b^2,2ab,-2b],[2ab,1-a^2+b^2,2a],[2b,-2a,1-a^2-b^2]|=(1+a^2+b^2...

    Text Solution

    |

  5. Prove the following : |{:(x,y,z),(x^(2),y^(2),z^(2)),(x^(3),y^(3),z^...

    Text Solution

    |

  6. [[x, x^2, yz],[y, y^2, zx],[z, z^2, xy]]=(x-y)(y-z)(z-x)(xy+yz+zx)

    Text Solution

    |

  7. Prove that : |{:(x+y+2z,x,y),(z,y+z+2x,y),(z,x,x+a+2y):}|=2(x+y+)^(3)

    Text Solution

    |

  8. Prove that |{:(b+c, c+a, a+b),(c+a, a+b,b+c),(a+b, b+c, c+a):}| =2(...

    Text Solution

    |

  9. Using properties of determinants, prove the following: |xx+y x+2y\...

    Text Solution

    |

  10. |[b+c, a,a] , [b,c+a,b] , [c,c,a+b]|=4abc

    Text Solution

    |

  11. Prove the following : |{:(2ab,a^(2),b^(2)),(a^(2),b^(2),2ab),(b^(2),...

    Text Solution

    |

  12. Prove the following : |(1,x,x^(2)-yz),(1,y,y^(2)-zx),(1,z,z^(2)-xy)|=...

    Text Solution

    |

  13. For any scalar p prove that =|xx^2 1+p x^3y y^2 1+p y^3z z^2 1+p z^3|=...

    Text Solution

    |

  14. |(x+y+z,-z,-y),(-z,x+y+z,-x),(-y,-x,x+y+z)|=2(x+y)(y+z)(z+x)

    Text Solution

    |

  15. Prove: |2y y-z-x2y2z2z z-x-y x-y-z2x2x|=(x+y+z)^3

    Text Solution

    |

  16. |(a-b-c,2a,2a),(2b,b-c-a,2b),(2c,2c,c-a-b)|

    Text Solution

    |

  17. Show that: |3a-a+b-a+c-b+a3b-b+c-c+a-c+b3c|=3(a+b+c)(a b+b c+c a)dot

    Text Solution

    |

  18. Using properties of determinants. Find the value of 'x' |(4-x,4+x,4+...

    Text Solution

    |

  19. Solve: |a+x a-x a-x a-x a+x a-x a-x a-x a+x|=0

    Text Solution

    |

  20. Prove that |[x, sintheta, costheta],[-sintheta, -x, 1],[costheta, 1, ...

    Text Solution

    |