Topper's Solved these Questions
DETERMINANTS
MODERN PUBLICATION|Exercise Exercise 4(c ) (SHORT ANSWER TYPE QUESTIONS)|4 VideosDETERMINANTS
MODERN PUBLICATION|Exercise Exercise 4(d) (SHORT ANSWER TYPE QUESTIONS)|4 VideosDETERMINANTS
MODERN PUBLICATION|Exercise Exercise 4(b) (LONG ANSWER TYPE QUESTIONS (I))|19 VideosCONTINUITY AND DIFFERENTIABILITY
MODERN PUBLICATION|Exercise CHAPTER TEST|12 VideosDIFFERENTIAL EQUATIONS
MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos
Similar Questions
Explore conceptually related problems
MODERN PUBLICATION-DETERMINANTS-Exercise 4(b) (LONG ANSWER TYPE QUESTIONS (II))
- Evaluate the following: |[a^2+2a, 2a+1, 1],[2a+1, a+2, 1],[3,3,1]|
Text Solution
|
- Given : a^(2)+b^(2)+c^(2) =0 Prove the following : |{:(b^(2)+c^(2...
Text Solution
|
- |[1+a^2-b^2,2ab,-2b],[2ab,1-a^2+b^2,2a],[2b,-2a,1-a^2-b^2]|=(1+a^2+b^2...
Text Solution
|
- Prove the following : |{:(x,y,z),(x^(2),y^(2),z^(2)),(x^(3),y^(3),z^...
Text Solution
|
- [[x, x^2, yz],[y, y^2, zx],[z, z^2, xy]]=(x-y)(y-z)(z-x)(xy+yz+zx)
Text Solution
|
- Prove that : |{:(x+y+2z,x,y),(z,y+z+2x,y),(z,x,x+a+2y):}|=2(x+y+)^(3)
Text Solution
|
- Prove that |{:(b+c, c+a, a+b),(c+a, a+b,b+c),(a+b, b+c, c+a):}| =2(...
Text Solution
|
- Using properties of determinants, prove the following: |xx+y x+2y\...
Text Solution
|
- |[b+c, a,a] , [b,c+a,b] , [c,c,a+b]|=4abc
Text Solution
|
- Prove the following : |{:(2ab,a^(2),b^(2)),(a^(2),b^(2),2ab),(b^(2),...
Text Solution
|
- Prove the following : |(1,x,x^(2)-yz),(1,y,y^(2)-zx),(1,z,z^(2)-xy)|=...
Text Solution
|
- For any scalar p prove that =|xx^2 1+p x^3y y^2 1+p y^3z z^2 1+p z^3|=...
Text Solution
|
- |(x+y+z,-z,-y),(-z,x+y+z,-x),(-y,-x,x+y+z)|=2(x+y)(y+z)(z+x)
Text Solution
|
- Prove: |2y y-z-x2y2z2z z-x-y x-y-z2x2x|=(x+y+z)^3
Text Solution
|
- |(a-b-c,2a,2a),(2b,b-c-a,2b),(2c,2c,c-a-b)|
Text Solution
|
- Show that: |3a-a+b-a+c-b+a3b-b+c-c+a-c+b3c|=3(a+b+c)(a b+b c+c a)dot
Text Solution
|
- Using properties of determinants. Find the value of 'x' |(4-x,4+x,4+...
Text Solution
|
- Solve: |a+x a-x a-x a-x a+x a-x a-x a-x a+x|=0
Text Solution
|
- Prove that |[x, sintheta, costheta],[-sintheta, -x, 1],[costheta, 1, ...
Text Solution
|
- Prove that |{:(1+a,1,1),(1,1+b,1),(1,1,1+c):}| =abc (1+(1)/(a)+(1)/...
Text Solution
|