Home
Class 12
MATHS
Prove that |{:(b+c, c+a, a+b),(c+a, a...

Prove that
`|{:(b+c, c+a, a+b),(c+a, a+b,b+c),(a+b, b+c, c+a):}| =2(a+b+c)(ab+bc+ca-a^(2)-b^(2)-c^(2)).`

Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    MODERN PUBLICATION|Exercise Exercise 4(c ) (SHORT ANSWER TYPE QUESTIONS)|4 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Exercise 4(d) (SHORT ANSWER TYPE QUESTIONS)|4 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Exercise 4(b) (LONG ANSWER TYPE QUESTIONS (I))|19 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos

Similar Questions

Explore conceptually related problems

Prove that |{:(1, a, a^(2)-bc),(1, b, b^(2)-ca), (1, c, c^(2)-ab):}|=0

Prove that : (i) |{:(a,c,a+c),(a+b,b,a),(b,b+c,c):}|=2 abc (ii) Prove that : |{:(a^(2),bc,ac+c^(2)),(a^(2)+ab,b^(2),ac),(ab,b^(2)+bc,c^(2)):}|=4a^(2)b^(2)c^(2)

Prove that |[(b+c)^2, a^2, bc],[(c+a)^2, b^2, ca],[(a+b)^2, c^2, ab]|=(a-b)(b-c)(c-a)(a+b+c)(a^2+b^2+c^2)

Prove that : |{:(b^(2)c^(2),bc, b+c),(c^(2)a^(2),ca, c+a),(a^(2)b^(2),ab, a+b):}|=0

Prove that |(a,b-c,c+b),(a+c,b,c-a),(a-b,b+a,c)|=(a+b+c)(a^(2)+b^(2)+c^(2)) .

Prove that: |(a,a+c,a-b),(b-c,b,b+a),(c+b,c-a,c)|=(a+b+c)(a^(2)+b^(2)+c^(2))

Prove that |[a+b+c, -c, -b],[-c, a+b+c, -a],[-b, -a, a+b+c]|=2(a+b)(b+c)(c+a)

Prove that |[(a+b)^(2),ca,bc],[ca,(b+c)^(2),ab],[bc,ab,(c+a)^(2)]|=2abc(a+b+c)^(3)

Prove the following : |{:(a^(2),a,b+c),(b^(2),b,c+a),(c^(2),c,a+b):}|=-(a+b+c)(a-b)(b-c)(c-a)

If a, b and c are distinct positive real numbers such that Delta_(1) = |(a,b,c),(b,c,a),(c,a,b)| and Delta_(2) = |(bc - a^2, ac -b^2, ab - c^2),(ac - b^2, ab - c^2, bc -a^2),(ab -c^2, bc - a^2, ac - b^2)| , then

MODERN PUBLICATION-DETERMINANTS-Exercise 4(b) (LONG ANSWER TYPE QUESTIONS (II))
  1. [[x, x^2, yz],[y, y^2, zx],[z, z^2, xy]]=(x-y)(y-z)(z-x)(xy+yz+zx)

    Text Solution

    |

  2. Prove that : |{:(x+y+2z,x,y),(z,y+z+2x,y),(z,x,x+a+2y):}|=2(x+y+)^(3)

    Text Solution

    |

  3. Prove that |{:(b+c, c+a, a+b),(c+a, a+b,b+c),(a+b, b+c, c+a):}| =2(...

    Text Solution

    |

  4. Using properties of determinants, prove the following: |xx+y x+2y\...

    Text Solution

    |

  5. |[b+c, a,a] , [b,c+a,b] , [c,c,a+b]|=4abc

    Text Solution

    |

  6. Prove the following : |{:(2ab,a^(2),b^(2)),(a^(2),b^(2),2ab),(b^(2),...

    Text Solution

    |

  7. Prove the following : |(1,x,x^(2)-yz),(1,y,y^(2)-zx),(1,z,z^(2)-xy)|=...

    Text Solution

    |

  8. For any scalar p prove that =|xx^2 1+p x^3y y^2 1+p y^3z z^2 1+p z^3|=...

    Text Solution

    |

  9. |(x+y+z,-z,-y),(-z,x+y+z,-x),(-y,-x,x+y+z)|=2(x+y)(y+z)(z+x)

    Text Solution

    |

  10. Prove: |2y y-z-x2y2z2z z-x-y x-y-z2x2x|=(x+y+z)^3

    Text Solution

    |

  11. |(a-b-c,2a,2a),(2b,b-c-a,2b),(2c,2c,c-a-b)|

    Text Solution

    |

  12. Show that: |3a-a+b-a+c-b+a3b-b+c-c+a-c+b3c|=3(a+b+c)(a b+b c+c a)dot

    Text Solution

    |

  13. Using properties of determinants. Find the value of 'x' |(4-x,4+x,4+...

    Text Solution

    |

  14. Solve: |a+x a-x a-x a-x a+x a-x a-x a-x a+x|=0

    Text Solution

    |

  15. Prove that |[x, sintheta, costheta],[-sintheta, -x, 1],[costheta, 1, ...

    Text Solution

    |

  16. Prove that |{:(1+a,1,1),(1,1+b,1),(1,1,1+c):}| =abc (1+(1)/(a)+(1)/...

    Text Solution

    |

  17. Prove that : |{:((y+z)^(2),x^(2),x^(2)),(y^(2),(x+z)^(2),y^(2)),(z^(2)...

    Text Solution

    |

  18. Prove that | ((b+c)^2, a^2,a^2),(b^2,(c+a)^2,b^2),(c^2,c^2,(a+b)^2)|=2...

    Text Solution

    |

  19. |[(b+c)^2,ab,ca],[ab,(a+c)^2,bc],[ac,bc,(a+b)^2]|=2abc(a+b+c)^3

    Text Solution

    |

  20. Show that Delta=|(y+z)^2x y z xx y(x+z)^2y z x z y z(x+y)^2|=2x y z(x+...

    Text Solution

    |