Home
Class 12
MATHS
Solve the following system of equations ...

Solve the following system of equations by Cramer's Rule :
`3x+y+z=10`, `x+y+z=0`, `5x-9y=1`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the system of equations using Cramer's Rule, we will follow these steps: ### Given Equations: 1. \( 3x + y + z = 10 \) (Equation 1) 2. \( x + y + z = 0 \) (Equation 2) 3. \( 5x - 9y + 0z = 1 \) (Equation 3) ### Step 1: Write the Coefficient Matrix (A) and the Constant Matrix (B) The coefficient matrix \( A \) and the constant matrix \( B \) are formed as follows: \[ A = \begin{bmatrix} 3 & 1 & 1 \\ 1 & 1 & 1 \\ 5 & -9 & 0 \end{bmatrix}, \quad B = \begin{bmatrix} 10 \\ 0 \\ 1 \end{bmatrix} \] ### Step 2: Calculate the Determinant of Matrix A (\( \Delta \)) To find \( \Delta \), we calculate the determinant of matrix \( A \): \[ \Delta = \begin{vmatrix} 3 & 1 & 1 \\ 1 & 1 & 1 \\ 5 & -9 & 0 \end{vmatrix} \] Using the determinant formula for a 3x3 matrix: \[ \Delta = 3 \begin{vmatrix} 1 & 1 \\ -9 & 0 \end{vmatrix} - 1 \begin{vmatrix} 1 & 1 \\ 5 & 0 \end{vmatrix} + 1 \begin{vmatrix} 1 & 1 \\ 5 & -9 \end{vmatrix} \] Calculating the 2x2 determinants: 1. \( \begin{vmatrix} 1 & 1 \\ -9 & 0 \end{vmatrix} = (1)(0) - (1)(-9) = 9 \) 2. \( \begin{vmatrix} 1 & 1 \\ 5 & 0 \end{vmatrix} = (1)(0) - (1)(5) = -5 \) 3. \( \begin{vmatrix} 1 & 1 \\ 5 & -9 \end{vmatrix} = (1)(-9) - (1)(5) = -14 \) Substituting back into the determinant formula: \[ \Delta = 3(9) - 1(-5) + 1(-14) = 27 + 5 - 14 = 18 \] ### Step 3: Calculate \( \Delta_x \), \( \Delta_y \), and \( \Delta_z \) #### Finding \( \Delta_x \) Replace the first column of \( A \) with \( B \): \[ \Delta_x = \begin{vmatrix} 10 & 1 & 1 \\ 0 & 1 & 1 \\ 1 & -9 & 0 \end{vmatrix} \] Calculating this determinant: \[ \Delta_x = 10 \begin{vmatrix} 1 & 1 \\ -9 & 0 \end{vmatrix} - 1 \begin{vmatrix} 0 & 1 \\ 1 & 0 \end{vmatrix} + 1 \begin{vmatrix} 0 & 1 \\ 1 & -9 \end{vmatrix} \] Calculating the 2x2 determinants: 1. \( \begin{vmatrix} 1 & 1 \\ -9 & 0 \end{vmatrix} = 9 \) (calculated earlier) 2. \( \begin{vmatrix} 0 & 1 \\ 1 & 0 \end{vmatrix} = (0)(0) - (1)(1) = -1 \) 3. \( \begin{vmatrix} 0 & 1 \\ 1 & -9 \end{vmatrix} = (0)(-9) - (1)(1) = -1 \) Substituting back: \[ \Delta_x = 10(9) - 1(-1) + 1(-1) = 90 + 1 - 1 = 90 \] #### Finding \( \Delta_y \) Replace the second column of \( A \) with \( B \): \[ \Delta_y = \begin{vmatrix} 3 & 10 & 1 \\ 1 & 0 & 1 \\ 5 & 1 & 0 \end{vmatrix} \] Calculating this determinant: \[ \Delta_y = 3 \begin{vmatrix} 0 & 1 \\ 1 & 0 \end{vmatrix} - 10 \begin{vmatrix} 1 & 1 \\ 5 & 0 \end{vmatrix} + 1 \begin{vmatrix} 1 & 0 \\ 5 & 1 \end{vmatrix} \] Calculating the 2x2 determinants: 1. \( \begin{vmatrix} 0 & 1 \\ 1 & 0 \end{vmatrix} = -1 \) (calculated earlier) 2. \( \begin{vmatrix} 1 & 1 \\ 5 & 0 \end{vmatrix} = -5 \) (calculated earlier) 3. \( \begin{vmatrix} 1 & 0 \\ 5 & 1 \end{vmatrix} = 1 \) Substituting back: \[ \Delta_y = 3(-1) - 10(-5) + 1(1) = -3 + 50 + 1 = 48 \] #### Finding \( \Delta_z \) Replace the third column of \( A \) with \( B \): \[ \Delta_z = \begin{vmatrix} 3 & 1 & 10 \\ 1 & 1 & 0 \\ 5 & -9 & 1 \end{vmatrix} \] Calculating this determinant: \[ \Delta_z = 3 \begin{vmatrix} 1 & 0 \\ -9 & 1 \end{vmatrix} - 1 \begin{vmatrix} 1 & 0 \\ 5 & 1 \end{vmatrix} + 10 \begin{vmatrix} 1 & 1 \\ 5 & -9 \end{vmatrix} \] Calculating the 2x2 determinants: 1. \( \begin{vmatrix} 1 & 0 \\ -9 & 1 \end{vmatrix} = 1 \) 2. \( \begin{vmatrix} 1 & 0 \\ 5 & 1 \end{vmatrix} = 1 \) 3. \( \begin{vmatrix} 1 & 1 \\ 5 & -9 \end{vmatrix} = -14 \) (calculated earlier) Substituting back: \[ \Delta_z = 3(1) - 1(1) + 10(-14) = 3 - 1 - 140 = -138 \] ### Step 4: Apply Cramer’s Rule Using Cramer's Rule: \[ x = \frac{\Delta_x}{\Delta} = \frac{90}{18} = 5 \] \[ y = \frac{\Delta_y}{\Delta} = \frac{48}{18} = \frac{8}{3} \] \[ z = \frac{\Delta_z}{\Delta} = \frac{-138}{18} = -\frac{23}{3} \] ### Final Solution: \[ x = 5, \quad y = \frac{8}{3}, \quad z = -\frac{23}{3} \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    MODERN PUBLICATION|Exercise Exercise 4(g) (SHORT ANSWER TYPE QUESTIONS)|19 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Exercise 4(g) (LONG ANSWER TYPE QUESTIONS)|15 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Exercise 4(f) (SHORT ANSWER TYPE QUESTIONS)|13 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos

Similar Questions

Explore conceptually related problems

Solve the following system of equations by Cramers rule 2x-y=17 , 3x+5y=6

Solve the following system of equations by Cramer's Rule : x+3y=4 , y+3z=7 , 4x+z=6

Solve the following system of equation by Cramer's rule. x+y=4 and 3x-2y=9

Solve the following system of equations by Cramer's Rule : x+y+z=-1 , x+2y+3z=-4 , x+3y+4z=-6

Solve the following system of equation by Cramer's rule. x+y+z=9 2x+5y+7z=52 2x+y-z=0

Solve the following system of linear equations by Cramers rule: x+2y=1,\ \ \ 3x+y=4

Solve the following system of linear equations by Cramers rule: 2x+3y=10 ,\ \ \ x+6y=4

Solve the following system of linear equations by Cramers rule: 3x+y=19 ,\ \ \ 3x-y=23

Solve the following system of equations, using Cramer'e rule : x+y+3z=6 , x-3y-3z=-4 , 5x-3y+3z=8

Solve the following system of linear equations by Cramers rule: x+y=5,\ \ y+z=3,\ \ x+z=4