Home
Class 12
MATHS
Find the inverse of each of the followin...

Find the inverse of each of the following :
`[{:(2,1,3),(4,-1,0),(-7,2,1):}]`

Text Solution

AI Generated Solution

The correct Answer is:
To find the inverse of the given matrix \( A = \begin{pmatrix} 2 & 1 & 3 \\ 4 & -1 & 0 \\ -7 & 2 & 1 \end{pmatrix} \), we will follow these steps: ### Step 1: Calculate the Determinant of Matrix A The determinant of a \( 3 \times 3 \) matrix \( A = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} \) is calculated using the formula: \[ \text{det}(A) = a(ei - fh) - b(di - fg) + c(dh - eg) \] For our matrix \( A \): \[ \text{det}(A) = 2((-1)(1) - (0)(2)) - 1((4)(1) - (0)(-7)) + 3((4)(2) - (-1)(-7)) \] Calculating each term: 1. \( 2((-1)(1) - (0)(2)) = 2(-1 - 0) = -2 \) 2. \( -1((4)(1) - (0)(-7)) = -1(4 - 0) = -4 \) 3. \( 3((4)(2) - (-1)(-7)) = 3(8 - 7) = 3(1) = 3 \) Now, summing these up: \[ \text{det}(A) = -2 - 4 + 3 = -3 \] ### Step 2: Find the Adjoint of Matrix A The adjoint of a matrix is the transpose of its cofactor matrix. We need to calculate the cofactors for each element in the matrix. 1. **Cofactor \( C_{11} \)**: \[ C_{11} = \text{det}\begin{pmatrix} -1 & 0 \\ 2 & 1 \end{pmatrix} = (-1)(1) - (0)(2) = -1 \] 2. **Cofactor \( C_{12} \)**: \[ C_{12} = -\text{det}\begin{pmatrix} 4 & 0 \\ -7 & 1 \end{pmatrix} = -((4)(1) - (0)(-7)) = -4 \] 3. **Cofactor \( C_{13} \)**: \[ C_{13} = \text{det}\begin{pmatrix} 4 & -1 \\ -7 & 2 \end{pmatrix} = (4)(2) - (-1)(-7) = 8 - 7 = 1 \] 4. **Cofactor \( C_{21} \)**: \[ C_{21} = -\text{det}\begin{pmatrix} 1 & 3 \\ 2 & 1 \end{pmatrix} = -((1)(1) - (3)(2)) = -1 + 6 = 5 \] 5. **Cofactor \( C_{22} \)**: \[ C_{22} = \text{det}\begin{pmatrix} 2 & 3 \\ -7 & 1 \end{pmatrix} = (2)(1) - (3)(-7) = 2 + 21 = 23 \] 6. **Cofactor \( C_{23} \)**: \[ C_{23} = -\text{det}\begin{pmatrix} 2 & 1 \\ -7 & 2 \end{pmatrix} = -((2)(2) - (1)(-7)) = -4 + 7 = 3 \] 7. **Cofactor \( C_{31} \)**: \[ C_{31} = \text{det}\begin{pmatrix} 1 & 3 \\ -1 & 0 \end{pmatrix} = (1)(0) - (3)(-1) = 0 + 3 = 3 \] 8. **Cofactor \( C_{32} \)**: \[ C_{32} = -\text{det}\begin{pmatrix} 2 & 3 \\ 4 & 0 \end{pmatrix} = -((2)(0) - (3)(4)) = 12 \] 9. **Cofactor \( C_{33} \)**: \[ C_{33} = \text{det}\begin{pmatrix} 2 & 1 \\ 4 & -1 \end{pmatrix} = (2)(-1) - (1)(4) = -2 - 4 = -6 \] Now we can form the cofactor matrix: \[ \text{Cofactor Matrix} = \begin{pmatrix} -1 & -4 & 1 \\ 5 & 23 & 3 \\ 3 & 12 & -6 \end{pmatrix} \] Taking the transpose gives us the adjoint: \[ \text{Adjoint}(A) = \begin{pmatrix} -1 & 5 & 3 \\ -4 & 23 & 12 \\ 1 & 3 & -6 \end{pmatrix} \] ### Step 3: Calculate the Inverse of Matrix A Using the formula for the inverse: \[ A^{-1} = \frac{1}{\text{det}(A)} \cdot \text{Adjoint}(A) \] Substituting the values we found: \[ A^{-1} = \frac{1}{-3} \cdot \begin{pmatrix} -1 & 5 & 3 \\ -4 & 23 & 12 \\ 1 & 3 & -6 \end{pmatrix} \] Calculating the inverse: \[ A^{-1} = \begin{pmatrix} \frac{1}{3} & -\frac{5}{3} & -1 \\ \frac{4}{3} & -\frac{23}{3} & -4 \\ -\frac{1}{3} & -1 & 2 \end{pmatrix} \] ### Final Answer: \[ A^{-1} = \begin{pmatrix} \frac{1}{3} & -\frac{5}{3} & -1 \\ \frac{4}{3} & -\frac{23}{3} & -4 \\ -\frac{1}{3} & -1 & 2 \end{pmatrix} \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    MODERN PUBLICATION|Exercise Exercise 4(h) (SHORT ANSWER TYPE QUESTIONS)|10 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Exercise 4(h) (LONG ANSWER TYPE QUESTIONS)|52 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Exercise 4(g) (SHORT ANSWER TYPE QUESTIONS)|19 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos

Similar Questions

Explore conceptually related problems

Find the inverse of each of the following : [{:(1,0,0),(3,3,0),(5,2,-1):}]

Find the inverse of each of the following : [{:(1,2,3),(0,2,4),(0,0,5):}]

Find the inverse of each of the following matrice : [{:(-1,5),(-3,2):}]

Find the inverse of each of the following matrice : [{:(2,-2),(4,3):}]

Find the inverse of each of the following matrices : {:((1,5,2),(0,-1,2),(0,0,1)):}

find the inverse of the following matrix : [{:(1,-1),(2,3):}]

Find the inverse of each of the matrices given below : [(2,-1,4),(-3,0,1),(-1,1,2)]

Using elementary transformations, find the inverse of the following matrix [(2,-1,4),(4,0,2),(3,-2,7)]

Find the inverse of each of the matrices given below : [(2,-1,1), (3,0,-1),(2,6,0)]