Home
Class 12
MATHS
Find the inverse of each of the followin...

Find the inverse of each of the following :
`[{:(1,0,0),(3,3,0),(5,2,-1):}]`

Text Solution

AI Generated Solution

The correct Answer is:
To find the inverse of the given matrix \( A = \begin{pmatrix} 1 & 0 & 0 \\ 3 & 3 & 0 \\ 5 & 2 & -1 \end{pmatrix} \), we will follow these steps: ### Step 1: Calculate the Determinant of Matrix \( A \) The determinant of a \( 3 \times 3 \) matrix \( A = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} \) can be calculated using the formula: \[ \text{det}(A) = a(ei - fh) - b(di - fg) + c(dh - eg) \] For our matrix \( A \): \[ \text{det}(A) = 1 \cdot (3 \cdot (-1) - 0 \cdot 2) - 0 \cdot (3 \cdot (-1) - 0 \cdot 5) + 0 \cdot (3 \cdot 2 - 3 \cdot 5) \] Calculating this gives: \[ \text{det}(A) = 1 \cdot (-3) = -3 \] ### Step 2: Calculate the Cofactor Matrix Next, we need to find the cofactor matrix of \( A \). The cofactor \( C_{ij} \) is calculated by taking the determinant of the \( 2 \times 2 \) matrix that remains after removing the \( i^{th} \) row and \( j^{th} \) column, and then applying a sign based on the position. 1. **Cofactor \( C_{11} \)** (remove 1st row, 1st column): \[ C_{11} = \text{det}\begin{pmatrix} 3 & 0 \\ 2 & -1 \end{pmatrix} = (3)(-1) - (0)(2) = -3 \] 2. **Cofactor \( C_{12} \)** (remove 1st row, 2nd column): \[ C_{12} = -\text{det}\begin{pmatrix} 3 & 0 \\ 5 & -1 \end{pmatrix} = -((3)(-1) - (0)(5)) = 3 \] 3. **Cofactor \( C_{13} \)** (remove 1st row, 3rd column): \[ C_{13} = \text{det}\begin{pmatrix} 3 & 3 \\ 5 & 2 \end{pmatrix} = (3)(2) - (3)(5) = 6 - 15 = -9 \] 4. **Cofactor \( C_{21} \)** (remove 2nd row, 1st column): \[ C_{21} = -\text{det}\begin{pmatrix} 0 & 0 \\ 2 & -1 \end{pmatrix} = -((0)(-1) - (0)(2)) = 0 \] 5. **Cofactor \( C_{22} \)** (remove 2nd row, 2nd column): \[ C_{22} = \text{det}\begin{pmatrix} 1 & 0 \\ 5 & -1 \end{pmatrix} = (1)(-1) - (0)(5) = -1 \] 6. **Cofactor \( C_{23} \)** (remove 2nd row, 3rd column): \[ C_{23} = -\text{det}\begin{pmatrix} 1 & 0 \\ 5 & 2 \end{pmatrix} = -((1)(2) - (0)(5)) = -2 \] 7. **Cofactor \( C_{31} \)** (remove 3rd row, 1st column): \[ C_{31} = \text{det}\begin{pmatrix} 0 & 0 \\ 3 & 0 \end{pmatrix} = (0)(0) - (0)(3) = 0 \] 8. **Cofactor \( C_{32} \)** (remove 3rd row, 2nd column): \[ C_{32} = -\text{det}\begin{pmatrix} 1 & 0 \\ 3 & 0 \end{pmatrix} = -((1)(0) - (0)(3)) = 0 \] 9. **Cofactor \( C_{33} \)** (remove 3rd row, 3rd column): \[ C_{33} = \text{det}\begin{pmatrix} 1 & 0 \\ 3 & 3 \end{pmatrix} = (1)(3) - (0)(3) = 3 \] The cofactor matrix is: \[ C = \begin{pmatrix} -3 & 3 & -9 \\ 0 & -1 & -2 \\ 0 & 0 & 3 \end{pmatrix} \] ### Step 3: Transpose the Cofactor Matrix to Get the Adjoint The adjoint of matrix \( A \) is the transpose of the cofactor matrix: \[ \text{adj}(A) = C^T = \begin{pmatrix} -3 & 0 & 0 \\ 3 & -1 & 0 \\ -9 & -2 & 3 \end{pmatrix} \] ### Step 4: Calculate the Inverse of Matrix \( A \) The inverse of matrix \( A \) is given by: \[ A^{-1} = \frac{1}{\text{det}(A)} \cdot \text{adj}(A) \] Substituting the values we found: \[ A^{-1} = \frac{1}{-3} \begin{pmatrix} -3 & 0 & 0 \\ 3 & -1 & 0 \\ -9 & -2 & 3 \end{pmatrix} \] Calculating this gives: \[ A^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ -1 & \frac{1}{3} & 0 \\ 3 & \frac{2}{3} & -1 \end{pmatrix} \] ### Final Answer Thus, the inverse of the matrix \( A \) is: \[ A^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ -1 & \frac{1}{3} & 0 \\ 3 & \frac{2}{3} & -1 \end{pmatrix} \] ---
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    MODERN PUBLICATION|Exercise Exercise 4(h) (SHORT ANSWER TYPE QUESTIONS)|10 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Exercise 4(h) (LONG ANSWER TYPE QUESTIONS)|52 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Exercise 4(g) (SHORT ANSWER TYPE QUESTIONS)|19 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos

Similar Questions

Explore conceptually related problems

Find the inverse of each of the following : [{:(2,1,3),(4,-1,0),(-7,2,1):}]

Find the inverse of each of the following : [{:(1,2,3),(0,2,4),(0,0,5):}]

Find the inverse of each of the following matrice : [{:(-1,5),(-3,2):}]

Find the inverse of each of the following matrices : {:((1,5,2),(0,-1,2),(0,0,1)):}

Find the inverse of each of the matrices given below : [(2,-1,4),(-3,0,1),(-1,1,2)]

Find the inverse of each of the matrices given below : [(2,-1,1), (3,0,-1),(2,6,0)]

Find the inverse of each of the matrices given below : [(0,0,-1), (2,-1,4),(-2,-4,-7)]

Using elementary transformations, find the inverse of the following matrix [(2,-1,4),(4,0,2),(3,-2,7)]

The inverse of the matrix [(1,0,0),(3,3,0),(5,2,-1)] is