Home
Class 12
MATHS
Given A=[{:(5,0,4),(2,3,2),(1,2,1):}], B...

Given `A=[{:(5,0,4),(2,3,2),(1,2,1):}]`, `B^(-1)=[{:(1,2,3),(1,4,3),(1,3,4):}]`. Compute `(AB)^(-1)`.

Text Solution

AI Generated Solution

The correct Answer is:
To compute \((AB)^{-1}\), we can use the property of inverses that states: \[ (AB)^{-1} = B^{-1}A^{-1} \] Given: - \( A = \begin{pmatrix} 5 & 0 & 4 \\ 2 & 3 & 2 \\ 1 & 2 & 1 \end{pmatrix} \) - \( B^{-1} = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 4 & 3 \\ 1 & 3 & 4 \end{pmatrix} \) ### Step 1: Calculate the Determinant of A To find \( A^{-1} \), we first need to calculate the determinant of \( A \). \[ \text{det}(A) = 5 \begin{vmatrix} 3 & 2 \\ 2 & 1 \end{vmatrix} - 0 + 4 \begin{vmatrix} 2 & 3 \\ 1 & 2 \end{vmatrix} \] Calculating the 2x2 determinants: \[ \begin{vmatrix} 3 & 2 \\ 2 & 1 \end{vmatrix} = (3)(1) - (2)(2) = 3 - 4 = -1 \] \[ \begin{vmatrix} 2 & 3 \\ 1 & 2 \end{vmatrix} = (2)(2) - (3)(1) = 4 - 3 = 1 \] Now substituting back: \[ \text{det}(A) = 5(-1) + 4(1) = -5 + 4 = -1 \] ### Step 2: Calculate the Adjoint of A The adjoint of \( A \) is the transpose of the cofactor matrix. We calculate the cofactors: 1. For \( A_{11} \): \[ C_{11} = \begin{vmatrix} 3 & 2 \\ 2 & 1 \end{vmatrix} = -1 \quad \Rightarrow \quad C_{11} = -1 \] 2. For \( A_{12} \): \[ C_{12} = -\begin{vmatrix} 2 & 2 \\ 1 & 1 \end{vmatrix} = -0 = 0 \] 3. For \( A_{13} \): \[ C_{13} = \begin{vmatrix} 2 & 3 \\ 1 & 2 \end{vmatrix} = 1 \] 4. For \( A_{21} \): \[ C_{21} = -\begin{vmatrix} 0 & 4 \\ 2 & 1 \end{vmatrix} = -(-8) = 8 \] 5. For \( A_{22} \): \[ C_{22} = \begin{vmatrix} 5 & 4 \\ 1 & 1 \end{vmatrix} = 5 - 4 = 1 \] 6. For \( A_{23} \): \[ C_{23} = -\begin{vmatrix} 5 & 0 \\ 1 & 2 \end{vmatrix} = -10 \] 7. For \( A_{31} \): \[ C_{31} = \begin{vmatrix} 0 & 4 \\ 3 & 2 \end{vmatrix} = 0 - 12 = -12 \] 8. For \( A_{32} \): \[ C_{32} = -\begin{vmatrix} 5 & 4 \\ 2 & 2 \end{vmatrix} = -2 \] 9. For \( A_{33} \): \[ C_{33} = \begin{vmatrix} 5 & 0 \\ 2 & 3 \end{vmatrix} = 15 \] The cofactor matrix is: \[ \text{Cof}(A) = \begin{pmatrix} -1 & 0 & 1 \\ 8 & 1 & -10 \\ -12 & -2 & 15 \end{pmatrix} \] Taking the transpose to get the adjoint: \[ \text{adj}(A) = \begin{pmatrix} -1 & 8 & -12 \\ 0 & 1 & -2 \\ 1 & -10 & 15 \end{pmatrix} \] ### Step 3: Calculate \( A^{-1} \) Using the formula: \[ A^{-1} = \frac{1}{\text{det}(A)} \text{adj}(A) = -1 \cdot \text{adj}(A) \] Thus: \[ A^{-1} = \begin{pmatrix} 1 & -8 & 12 \\ 0 & -1 & 2 \\ -1 & 10 & -15 \end{pmatrix} \] ### Step 4: Compute \( (AB)^{-1} \) Now we can compute: \[ (AB)^{-1} = B^{-1} A^{-1} \] Substituting the matrices: \[ B^{-1} = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 4 & 3 \\ 1 & 3 & 4 \end{pmatrix}, \quad A^{-1} = \begin{pmatrix} 1 & -8 & 12 \\ 0 & -1 & 2 \\ -1 & 10 & -15 \end{pmatrix} \] Now we multiply these two matrices: \[ (AB)^{-1} = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 4 & 3 \\ 1 & 3 & 4 \end{pmatrix} \begin{pmatrix} 1 & -8 & 12 \\ 0 & -1 & 2 \\ -1 & 10 & -15 \end{pmatrix} \] Calculating the product: 1. First row: - \( 1 \cdot 1 + 2 \cdot 0 + 3 \cdot (-1) = 1 + 0 - 3 = -2 \) - \( 1 \cdot (-8) + 2 \cdot (-1) + 3 \cdot 10 = -8 - 2 + 30 = 20 \) - \( 1 \cdot 12 + 2 \cdot 2 + 3 \cdot (-15) = 12 + 4 - 45 = -29 \) 2. Second row: - \( 1 \cdot 1 + 4 \cdot 0 + 3 \cdot (-1) = 1 + 0 - 3 = -2 \) - \( 1 \cdot (-8) + 4 \cdot (-1) + 3 \cdot 10 = -8 - 4 + 30 = 18 \) - \( 1 \cdot 12 + 4 \cdot 2 + 3 \cdot (-15) = 12 + 8 - 45 = -25 \) 3. Third row: - \( 1 \cdot 1 + 3 \cdot 0 + 4 \cdot (-1) = 1 + 0 - 4 = -3 \) - \( 1 \cdot (-8) + 3 \cdot (-1) + 4 \cdot 10 = -8 - 3 + 40 = 29 \) - \( 1 \cdot 12 + 3 \cdot 2 + 4 \cdot (-15) = 12 + 6 - 60 = -42 \) Thus, we have: \[ (AB)^{-1} = \begin{pmatrix} -2 & 20 & -29 \\ -2 & 18 & -25 \\ -3 & 29 & -42 \end{pmatrix} \] ### Final Answer \[ (AB)^{-1} = \begin{pmatrix} -2 & 20 & -29 \\ -2 & 18 & -25 \\ -3 & 29 & -42 \end{pmatrix} \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    MODERN PUBLICATION|Exercise Exercise 4(h) (SHORT ANSWER TYPE QUESTIONS)|10 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Exercise 4(h) (LONG ANSWER TYPE QUESTIONS)|52 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Exercise 4(g) (SHORT ANSWER TYPE QUESTIONS)|19 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos

Similar Questions

Explore conceptually related problems

if A=[{:(4,3,2),(-1,2,0):}], B=[{:(1,2),(-1,0),(1,-2):}] then |AB| = ……..

Find the inverse of each of the matrices given below : Compute (AB)^(-1) when A=[(1,1,2),(0,2,-3),(3,-2,4)] and B^(-1)=[(1,2,0),(0,3,-1),(1,0,2)] . Find A^(-1).

if A=[{:(4,0,-3),(1,2,0):}]and B=[{:(2,1),(1,-2),(3,4):}]' then find AB and BA.

If A^(-1)=|{:(1,3,3),(1,4,3),(1,3,4):}|" and B"=[{:(5,0,4),(2,3,2),(1,2,1):}]," then find"(AB)^(-1)

Given A=[{:(2,4,0),(3,9,6):}] "and" B=[{:(1,4),(2,8),(1,3):}] , is (AB)=B'A'?

If A=[{:(2,3,-1),(1,4,2):}]andB=[{:(2,3),(4,5),(2,1):}] , then AB=

A=[{:(2,1,2),(1,2,4):}] and B=[{:(4,1),(2,3),(1,2):}] Verify AB=BA or not.

if A=[{:(1,2,-3),(5,0,2),(1,-1,1):}],B=[{:(3,-1,2),(4,2,5),(2,0,3):}]and c=[{:(4,1,2),(0,3,2),(1,-2,3):}], then compure (A+B) and (B-C), Also , verify that A+(B-C)=(A+B)-C.

if A=[{:(2,1,3),(1,-1,2),(4,1,5):}]and B=[{:(1,-1,2),(2,1,5),(4,1,3):}], then show that : (i) (A+B)'=A'+B' (ii) (A+4B)'=A'+4B'