Home
Class 12
MATHS
If A=[{:(1,2,2),(2,1,2),(2,2,1):}], prov...

If `A=[{:(1,2,2),(2,1,2),(2,2,1):}]`, prove that `A^(2)-4A-5I=O` and hence, obtain `A^(-1)`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to prove that \( A^2 - 4A - 5I = O \) and then find \( A^{-1} \). ### Step 1: Define the Matrix A Given the matrix: \[ A = \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{pmatrix} \] ### Step 2: Calculate \( A^2 \) To find \( A^2 \), we multiply matrix \( A \) by itself: \[ A^2 = A \cdot A = \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{pmatrix} \] Calculating each element of \( A^2 \): - First row: - \( (1 \cdot 1 + 2 \cdot 2 + 2 \cdot 2) = 1 + 4 + 4 = 9 \) - \( (1 \cdot 2 + 2 \cdot 1 + 2 \cdot 2) = 2 + 2 + 4 = 8 \) - \( (1 \cdot 2 + 2 \cdot 2 + 2 \cdot 1) = 2 + 4 + 2 = 8 \) - Second row: - \( (2 \cdot 1 + 1 \cdot 2 + 2 \cdot 2) = 2 + 2 + 4 = 8 \) - \( (2 \cdot 2 + 1 \cdot 1 + 2 \cdot 2) = 4 + 1 + 4 = 9 \) - \( (2 \cdot 2 + 1 \cdot 2 + 2 \cdot 1) = 4 + 2 + 2 = 8 \) - Third row: - \( (2 \cdot 1 + 2 \cdot 2 + 1 \cdot 2) = 2 + 4 + 2 = 8 \) - \( (2 \cdot 2 + 2 \cdot 1 + 1 \cdot 2) = 4 + 2 + 2 = 8 \) - \( (2 \cdot 2 + 2 \cdot 2 + 1 \cdot 1) = 4 + 4 + 1 = 9 \) Thus, we have: \[ A^2 = \begin{pmatrix} 9 & 8 & 8 \\ 8 & 9 & 8 \\ 8 & 8 & 9 \end{pmatrix} \] ### Step 3: Calculate \( 4A \) Now, calculate \( 4A \): \[ 4A = 4 \cdot \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{pmatrix} = \begin{pmatrix} 4 & 8 & 8 \\ 8 & 4 & 8 \\ 8 & 8 & 4 \end{pmatrix} \] ### Step 4: Calculate \( 5I \) Where \( I \) is the identity matrix: \[ 5I = 5 \cdot \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 5 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 5 \end{pmatrix} \] ### Step 5: Calculate \( A^2 - 4A - 5I \) Now, we need to compute \( A^2 - 4A - 5I \): \[ A^2 - 4A - 5I = \begin{pmatrix} 9 & 8 & 8 \\ 8 & 9 & 8 \\ 8 & 8 & 9 \end{pmatrix} - \begin{pmatrix} 4 & 8 & 8 \\ 8 & 4 & 8 \\ 8 & 8 & 4 \end{pmatrix} - \begin{pmatrix} 5 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 5 \end{pmatrix} \] Calculating this step-by-step: 1. \( A^2 - 4A \): \[ \begin{pmatrix} 9 - 4 & 8 - 8 & 8 - 8 \\ 8 - 8 & 9 - 4 & 8 - 8 \\ 8 - 8 & 8 - 8 & 9 - 4 \end{pmatrix} = \begin{pmatrix} 5 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 5 \end{pmatrix} \] 2. Now subtract \( 5I \): \[ \begin{pmatrix} 5 - 5 & 0 - 0 & 0 - 0 \\ 0 - 0 & 5 - 5 & 0 - 0 \\ 0 - 0 & 0 - 0 & 5 - 5 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \] Thus, we have shown that: \[ A^2 - 4A - 5I = O \] ### Step 6: Obtain \( A^{-1} \) From the equation \( A^2 - 4A = 5I \), we can rearrange it as: \[ A^2 - 4A - 5I = 0 \implies A^2 - 4A = 5I \] Now, multiplying both sides by \( A^{-1} \): \[ A A^{-1} - 4I = 5A^{-1} \] \[ I - 4I = 5A^{-1} \] \[ -3I = 5A^{-1} \] \[ A^{-1} = -\frac{1}{5} I \] Now substituting \( A \): \[ A^{-1} = \frac{1}{5} \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{pmatrix} - 4 \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \] Calculating \( A^{-1} \): \[ A^{-1} = \frac{1}{5} \begin{pmatrix} 1 - 4 & 2 & 2 \\ 2 & 1 - 4 & 2 \\ 2 & 2 & 1 - 4 \end{pmatrix} = \frac{1}{5} \begin{pmatrix} -3 & 2 & 2 \\ 2 & -3 & 2 \\ 2 & 2 & -3 \end{pmatrix} \] Thus, the final result for \( A^{-1} \) is: \[ A^{-1} = \begin{pmatrix} -\frac{3}{5} & \frac{2}{5} & \frac{2}{5} \\ \frac{2}{5} & -\frac{3}{5} & \frac{2}{5} \\ \frac{2}{5} & \frac{2}{5} & -\frac{3}{5} \end{pmatrix} \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    MODERN PUBLICATION|Exercise Exercise 4(h) (SHORT ANSWER TYPE QUESTIONS)|10 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Exercise 4(h) (LONG ANSWER TYPE QUESTIONS)|52 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Exercise 4(g) (SHORT ANSWER TYPE QUESTIONS)|19 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos

Similar Questions

Explore conceptually related problems

If A=|(1,2,2),(2,1,2),(2,2,1)|, verifty that A^2-4A-5I-5I=0

If A=[[1,2,22,1,22,2,1]], then prove that A^(2)-4A-5I,=O

If A=|{:(1,2,2),(2,1,2),(2,2,1):}| , then show that A^(2)-4A-5I_(3)=0 . Hemce find A^(-1) .

Show that the matrix A=[{:(2,3),(1,2):}] satisfies the equation A^(2)-4A+I=O and hence, find A^(-1) .

If A=[122212221], find A^(-1) and prove that A^(2)-4A-5I=O

Find the inverse of each of the matrices given below : If A=[(3,2),(2,1)] , verify that A^(2)-4A-I=O, and "hence " "find "A^(-1) .

If A=[{:(1,-1),(2,3):}] , shown that A^(2)-44+5I=o . Hence Find A^(-1) .

If A=[{:(3,1),(-1,2):}] , show that A^(2)-5A+7I=O . Hence, find A^(-1) .

Show that the matrix A=[122212221] satisfies the equation A^(2)-4A-5I_(3)=O and hence find A^(-1) .