Home
Class 12
MATHS
If A=[{:(2,0,1),(2,1,3),(1,-1,0):}]. fin...

If `A=[{:(2,0,1),(2,1,3),(1,-1,0):}]`. find `A^(2)-5A+6I` and hence , find a matrix `X` such that `A^(2)-5A+6I+X=O`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find \( A^2 - 5A + 6I \) for the given matrix \( A \) and then determine the matrix \( X \) such that \( A^2 - 5A + 6I + X = O \). ### Step 1: Define the Matrix \( A \) The matrix \( A \) is given as: \[ A = \begin{pmatrix} 2 & 0 & 1 \\ 2 & 1 & 3 \\ 1 & -1 & 0 \end{pmatrix} \] ### Step 2: Calculate \( A^2 \) To find \( A^2 \), we perform the matrix multiplication \( A \times A \). \[ A^2 = A \cdot A = \begin{pmatrix} 2 & 0 & 1 \\ 2 & 1 & 3 \\ 1 & -1 & 0 \end{pmatrix} \cdot \begin{pmatrix} 2 & 0 & 1 \\ 2 & 1 & 3 \\ 1 & -1 & 0 \end{pmatrix} \] Calculating the elements of \( A^2 \): - First row: - \( (2*2 + 0*2 + 1*1) = 4 + 0 + 1 = 5 \) - \( (2*0 + 0*1 + 1*(-1)) = 0 + 0 - 1 = -1 \) - \( (2*1 + 0*3 + 1*0) = 2 + 0 + 0 = 2 \) - Second row: - \( (2*2 + 1*2 + 3*1) = 4 + 2 + 3 = 9 \) - \( (2*0 + 1*1 + 3*(-1)) = 0 + 1 - 3 = -2 \) - \( (2*1 + 1*3 + 3*0) = 2 + 3 + 0 = 5 \) - Third row: - \( (1*2 + (-1)*2 + 0*1) = 2 - 2 + 0 = 0 \) - \( (1*0 + (-1)*1 + 0*(-1)) = 0 - 1 + 0 = -1 \) - \( (1*1 + (-1)*3 + 0*0) = 1 - 3 + 0 = -2 \) Thus, we have: \[ A^2 = \begin{pmatrix} 5 & -1 & 2 \\ 9 & -2 & 5 \\ 0 & -1 & -2 \end{pmatrix} \] ### Step 3: Calculate \( -5A \) Now, we calculate \( -5A \): \[ -5A = -5 \cdot \begin{pmatrix} 2 & 0 & 1 \\ 2 & 1 & 3 \\ 1 & -1 & 0 \end{pmatrix} = \begin{pmatrix} -10 & 0 & -5 \\ -10 & -5 & -15 \\ -5 & 5 & 0 \end{pmatrix} \] ### Step 4: Calculate \( 6I \) The identity matrix \( I \) for a \( 3 \times 3 \) matrix is: \[ I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \] Thus, \[ 6I = 6 \cdot \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 6 & 0 & 0 \\ 0 & 6 & 0 \\ 0 & 0 & 6 \end{pmatrix} \] ### Step 5: Combine \( A^2 - 5A + 6I \) Now we combine the results: \[ A^2 - 5A + 6I = \begin{pmatrix} 5 & -1 & 2 \\ 9 & -2 & 5 \\ 0 & -1 & -2 \end{pmatrix} + \begin{pmatrix} -10 & 0 & -5 \\ -10 & -5 & -15 \\ -5 & 5 & 0 \end{pmatrix} + \begin{pmatrix} 6 & 0 & 0 \\ 0 & 6 & 0 \\ 0 & 0 & 6 \end{pmatrix} \] Calculating each element: - First row: - \( 5 - 10 + 6 = 1 \) - \( -1 + 0 + 0 = -1 \) - \( 2 - 5 + 0 = -3 \) - Second row: - \( 9 - 10 + 0 = -1 \) - \( -2 - 5 + 6 = -1 \) - \( 5 - 15 + 0 = -10 \) - Third row: - \( 0 - 5 + 0 = -5 \) - \( -1 + 5 + 0 = 4 \) - \( -2 + 0 + 6 = 4 \) Thus, we have: \[ A^2 - 5A + 6I = \begin{pmatrix} 1 & -1 & -3 \\ -1 & -1 & -10 \\ -5 & 4 & 4 \end{pmatrix} \] ### Step 6: Find Matrix \( X \) We need to find \( X \) such that: \[ A^2 - 5A + 6I + X = O \] This implies: \[ X = - (A^2 - 5A + 6I) \] Thus, \[ X = - \begin{pmatrix} 1 & -1 & -3 \\ -1 & -1 & -10 \\ -5 & 4 & 4 \end{pmatrix} = \begin{pmatrix} -1 & 1 & 3 \\ 1 & 1 & 10 \\ 5 & -4 & -4 \end{pmatrix} \] ### Final Result The final answer is: \[ A^2 - 5A + 6I = \begin{pmatrix} 1 & -1 & -3 \\ -1 & -1 & -10 \\ -5 & 4 & 4 \end{pmatrix} \] and \[ X = \begin{pmatrix} -1 & 1 & 3 \\ 1 & 1 & 10 \\ 5 & -4 & -4 \end{pmatrix} \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    MODERN PUBLICATION|Exercise Exercise 4(h) (SHORT ANSWER TYPE QUESTIONS)|10 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Exercise 4(h) (LONG ANSWER TYPE QUESTIONS)|52 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Exercise 4(g) (SHORT ANSWER TYPE QUESTIONS)|19 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos

Similar Questions

Explore conceptually related problems

If A=[(2, 0, 1 ),(2, 1, 3),( 1,-1, 0)] , find A^2-5A+4I and hence find a matrix X such that A^2-5A+4I+X=O .

If A=[[2,0,1],[2,1,3],[1,-1,0]] , then find value of A^(2)-5A+6I

If A=[(2,-1,1),(-1,2,-1),(1,-1,2)] show that A^(2)-5A+4I=0 Hence find A^(-1)

If A= [(1,1,3),(5,2,6),(-2,-1,-3)] then find A^(14)+3A-2I

If A=[{:(2,-1),(1,3):}] , then show that A^(2)-5A+7I_(2)=O , hence find A^(-1) .

If A=[(1,0),(3,-1),(-5,2)] and B=[(1,-2),(-2,2),(1,1)] , then find the matrix 'X' such that 3A + X = 5B.

If A=[[1,3,2],[-1,2,0],[0,-1,1]] , then find a matrix X such that A^(2)-2A-X=0

if A=[{:(1,6),(2,4),(-3,5):}]B=[{:(3,4),(1,-2),(2,-1):}], then find a matrix C such that 2A-B+c=0

If A=[{:(3,1),(-1,2):}] , show that A^(2)-5A+7I=O . Hence, find A^(-1) .

If A=[{:(,1,1,2),(,0,2,1),(,1,0,2):}] show that A^(3)=(5A-I)(A-I)