Home
Class 12
MATHS
Find AB, if A=[{:(1,2,3),(1,-2,3):}] an...

Find AB, if `A=[{:(1,2,3),(1,-2,3):}]` and `B=[{:(1,-1),(1,2),(1,-2):}]`. Examine whether `(AB)^(-1)` exist or not.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of finding the product of matrices \( A \) and \( B \), and then determining whether the inverse of the product \( AB \) exists, we will follow these steps: ### Step 1: Define the matrices \( A \) and \( B \) Given: \[ A = \begin{pmatrix} 1 & 2 & 3 \\ 1 & -2 & 3 \end{pmatrix} \] \[ B = \begin{pmatrix} 1 & -1 \\ 1 & 2 \\ 1 & -2 \end{pmatrix} \] ### Step 2: Check the dimensions of the matrices Matrix \( A \) is a \( 2 \times 3 \) matrix (2 rows and 3 columns), and matrix \( B \) is a \( 3 \times 2 \) matrix (3 rows and 2 columns). The product \( AB \) can be computed since the number of columns in \( A \) (3) matches the number of rows in \( B \) (3). ### Step 3: Calculate the product \( AB \) To find \( AB \), we perform matrix multiplication: \[ AB = \begin{pmatrix} 1 & 2 & 3 \\ 1 & -2 & 3 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ 1 & 2 \\ 1 & -2 \end{pmatrix} \] Calculating each element of the resulting \( 2 \times 2 \) matrix: - First row, first column: \[ 1 \cdot 1 + 2 \cdot 1 + 3 \cdot 1 = 1 + 2 + 3 = 6 \] - First row, second column: \[ 1 \cdot (-1) + 2 \cdot 2 + 3 \cdot (-2) = -1 + 4 - 6 = -3 \] - Second row, first column: \[ 1 \cdot 1 + (-2) \cdot 1 + 3 \cdot 1 = 1 - 2 + 3 = 2 \] - Second row, second column: \[ 1 \cdot (-1) + (-2) \cdot 2 + 3 \cdot (-2) = -1 - 4 - 6 = -11 \] Thus, the product \( AB \) is: \[ AB = \begin{pmatrix} 6 & -3 \\ 2 & -11 \end{pmatrix} \] ### Step 4: Determine if \( (AB)^{-1} \) exists To check if the inverse of \( AB \) exists, we need to calculate the determinant of \( AB \). The determinant of a \( 2 \times 2 \) matrix \( \begin{pmatrix} a & b \\ c & d \end{pmatrix} \) is given by: \[ \text{det}(AB) = ad - bc \] For our matrix \( AB \): \[ a = 6, \quad b = -3, \quad c = 2, \quad d = -11 \] Calculating the determinant: \[ \text{det}(AB) = (6)(-11) - (-3)(2) = -66 + 6 = -60 \] Since the determinant \( \text{det}(AB) = -60 \) is not equal to zero, the inverse \( (AB)^{-1} \) exists. ### Final Result The product \( AB \) is: \[ AB = \begin{pmatrix} 6 & -3 \\ 2 & -11 \end{pmatrix} \] And the inverse \( (AB)^{-1} \) exists. ---
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    MODERN PUBLICATION|Exercise Exercise 4(h) (SHORT ANSWER TYPE QUESTIONS)|10 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Exercise 4(h) (LONG ANSWER TYPE QUESTIONS)|52 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Exercise 4(g) (SHORT ANSWER TYPE QUESTIONS)|19 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos

Similar Questions

Explore conceptually related problems

Find (AB)^(-1) " if "A = {:((1,2,3),(1,-2,-3)):}, B = {:((1,-1),(1,2),(1,-2)):}

A=[{:(2,1,2),(1,2,4):}] and B=[{:(4,1),(2,3),(1,2):}] Verify AB=BA or not.

if A=[{:(4,0,-3),(1,2,0):}]and B=[{:(2,1),(1,-2),(3,4):}]' then find AB and BA.

if A=[{:(4,3,2),(-1,2,0):}], B=[{:(1,2),(-1,0),(1,-2):}] then |AB| = ……..

if A=[{:(1,2,3),(4,5,6):}]and B=[{:(-3,-2),(0,1),(-4,-5):}], then find AB and BA ,

If A=[{:(3,-1),(1,-3):}]" and B"=[{:(2,1),(-1,-2):}]," then show that" : (AB)^(-1)=B^(-1)A^(-1)

If A^(-1)=|{:(1,3,3),(1,4,3),(1,3,4):}|" and B"=[{:(5,0,4),(2,3,2),(1,2,1):}]," then find"(AB)^(-1)

If A[{:(3,-4),(1,1),(2,0):}] and B=[{:(2,1,2),(1,2,4):}] , then verify AB = BA or not?

If A=[{:(2,-1),(3,4),(1,5):}]" and "B=[{:(-1,3),(2,1):}] , find AB. Does BA exist?