Home
Class 12
MATHS
Solve the following equations using inv...

Solve the following equations using inverse of a matrix.
`{:(2x+5y=1),(3x+2y=7):}`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equations \(2x + 5y = 1\) and \(3x + 2y = 7\) using the inverse of a matrix, we can follow these steps: ### Step 1: Write the equations in matrix form We can express the system of equations in the form \(Ax = b\), where: - \(A\) is the coefficient matrix, - \(x\) is the variable matrix, - \(b\) is the constant matrix. From the equations: \[ A = \begin{pmatrix} 2 & 5 \\ 3 & 2 \end{pmatrix}, \quad x = \begin{pmatrix} x \\ y \end{pmatrix}, \quad b = \begin{pmatrix} 1 \\ 7 \end{pmatrix} \] ### Step 2: Find the inverse of matrix \(A\) To find the inverse of matrix \(A\), we first need to calculate the determinant of \(A\): \[ \text{det}(A) = (2)(2) - (5)(3) = 4 - 15 = -11 \] Next, we find the adjoint of \(A\): \[ \text{adj}(A) = \begin{pmatrix} 2 & -5 \\ -3 & 2 \end{pmatrix} \] Now we can find \(A^{-1}\): \[ A^{-1} = \frac{1}{\text{det}(A)} \cdot \text{adj}(A) = \frac{1}{-11} \begin{pmatrix} 2 & -5 \\ -3 & 2 \end{pmatrix} = \begin{pmatrix} -\frac{2}{11} & \frac{5}{11} \\ \frac{3}{11} & -\frac{2}{11} \end{pmatrix} \] ### Step 3: Multiply \(A^{-1}\) by \(b\) Now we can find \(x\) by multiplying \(A^{-1}\) with \(b\): \[ x = A^{-1}b = \begin{pmatrix} -\frac{2}{11} & \frac{5}{11} \\ \frac{3}{11} & -\frac{2}{11} \end{pmatrix} \begin{pmatrix} 1 \\ 7 \end{pmatrix} \] Calculating the multiplication: \[ x = \begin{pmatrix} -\frac{2}{11} \cdot 1 + \frac{5}{11} \cdot 7 \\ \frac{3}{11} \cdot 1 - \frac{2}{11} \cdot 7 \end{pmatrix} = \begin{pmatrix} -\frac{2}{11} + \frac{35}{11} \\ \frac{3}{11} - \frac{14}{11} \end{pmatrix} = \begin{pmatrix} \frac{33}{11} \\ -\frac{11}{11} \end{pmatrix} = \begin{pmatrix} 3 \\ -1 \end{pmatrix} \] ### Step 4: State the solution Thus, the solution to the equations is: \[ x = 3, \quad y = -1 \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    MODERN PUBLICATION|Exercise Exercise 4(h) (LONG ANSWER TYPE QUESTIONS)|52 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTIONS (Multiple choice question)|25 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Exercise 4(g) (LONG ANSWER TYPE QUESTIONS)|15 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos

Similar Questions

Explore conceptually related problems

Solve the following equations using inverse of a matrix. {:(5x+2y=3),(3x+2y=5):}

Solve the following equations using inverse of a matrix. {:(2x-y=-2),(3x+4y=3):}

Solve the following equations using inverse of a matrix. {:(2x+3y=4),(4x+5y=6):}

Solve the following equations, using inverse of a matrix : {:(3x-y+z=5),(2x-2y+3z=7),(x+y-z=-1):}

Solve the following equations, using inverse of a matrix : {:(5x-y+z=4),(3x+2y-5z=2),(x+3y-2z=5):}

Solve the following equations, using inverse of a matrix : {:(2x+3y+3z=5),(x-2y+z=4),(3x-y-2z=3):}

Solve the following equations, using inverse of a matrix : {:(x-2y+3z=-5),(3x+y+z=8),(2x-y+2z=1):}

Solve the following equations, using inverse of a matrix : {:(4x+3y+z=10),(3x-y+2z=8),(x-2y-3z=-10):}

Solve the following equations, using inverse of a matrix : {:(3x-2y+3z=8),(2x+y-z=1),(4x-3y+2z=4):}