Home
Class 12
MATHS
Solve the following equations using inv...

Solve the following equations using inverse of a matrix.
`x+y=5`, `y+z=3`, `z+x=4`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the system of equations using the inverse of a matrix, we follow these steps: ### Step 1: Write the equations in matrix form The given equations are: 1. \( x + y = 5 \) 2. \( y + z = 3 \) 3. \( z + x = 4 \) We can express this system in the form \( AX = B \), where: - \( A \) is the coefficient matrix, - \( X \) is the column matrix of variables, - \( B \) is the column matrix of constants. From the equations, we can identify: \[ A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix}, \quad X = \begin{bmatrix} x \\ y \\ z \end{bmatrix}, \quad B = \begin{bmatrix} 5 \\ 3 \\ 4 \end{bmatrix} \] ### Step 2: Find the determinant of matrix \( A \) To find the inverse of matrix \( A \), we first need to calculate its determinant \( |A| \). \[ |A| = 1 \cdot (1 \cdot 1 - 1 \cdot 0) - 1 \cdot (0 \cdot 1 - 1 \cdot 1) + 0 \cdot (0 \cdot 1 - 1 \cdot 1) \] Calculating this step-by-step: \[ = 1 \cdot 1 - 1 \cdot (-1) + 0 \] \[ = 1 + 1 = 2 \] ### Step 3: Find the adjoint of matrix \( A \) Next, we need to find the adjoint of matrix \( A \). The adjoint is the transpose of the cofactor matrix. The cofactor matrix \( C \) is calculated as follows: \[ C = \begin{bmatrix} C_{11} & C_{12} & C_{13} \\ C_{21} & C_{22} & C_{23} \\ C_{31} & C_{32} & C_{33} \end{bmatrix} \] Where each \( C_{ij} \) is calculated by taking the determinant of the submatrix formed by deleting the \( i \)-th row and \( j \)-th column, multiplied by \( (-1)^{i+j} \). Calculating each cofactor: - \( C_{11} = | \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} | = 1 \) - \( C_{12} = -| \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} | = -(-1) = 1 \) - \( C_{13} = | \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} | = -1 \) - \( C_{21} = -| \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} | = -1 \) - \( C_{22} = | \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} | = 1 \) - \( C_{23} = -| \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} | = -(-1) = 1 \) - \( C_{31} = | \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} | = -1 \) - \( C_{32} = -| \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} | = -1 \) - \( C_{33} = | \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} | = 1 \) Thus, the cofactor matrix \( C \) is: \[ C = \begin{bmatrix} 1 & 1 & -1 \\ -1 & 1 & 1 \\ -1 & -1 & 1 \end{bmatrix} \] Now, we take the transpose of this matrix to get the adjoint: \[ \text{Adj}(A) = \begin{bmatrix} 1 & -1 & -1 \\ 1 & 1 & -1 \\ -1 & 1 & 1 \end{bmatrix} \] ### Step 4: Calculate the inverse of matrix \( A \) The inverse of matrix \( A \) is given by: \[ A^{-1} = \frac{1}{|A|} \cdot \text{Adj}(A) \] Substituting the values we found: \[ A^{-1} = \frac{1}{2} \begin{bmatrix} 1 & -1 & -1 \\ 1 & 1 & -1 \\ -1 & 1 & 1 \end{bmatrix} \] ### Step 5: Multiply \( A^{-1} \) by \( B \) to find \( X \) Now we can find \( X \) by multiplying \( A^{-1} \) with \( B \): \[ X = A^{-1}B = \frac{1}{2} \begin{bmatrix} 1 & -1 & -1 \\ 1 & 1 & -1 \\ -1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 5 \\ 3 \\ 4 \end{bmatrix} \] Calculating the multiplication: 1. First row: \( \frac{1}{2} (1 \cdot 5 + (-1) \cdot 3 + (-1) \cdot 4) = \frac{1}{2} (5 - 3 - 4) = \frac{1}{2} (-2) = -1 \) 2. Second row: \( \frac{1}{2} (1 \cdot 5 + 1 \cdot 3 + (-1) \cdot 4) = \frac{1}{2} (5 + 3 - 4) = \frac{1}{2} (4) = 2 \) 3. Third row: \( \frac{1}{2} ((-1) \cdot 5 + 1 \cdot 3 + 1 \cdot 4) = \frac{1}{2} (-5 + 3 + 4) = \frac{1}{2} (2) = 1 \) Thus, we have: \[ X = \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix} \] ### Step 6: Interpret the results From the matrix \( X \), we find: - \( x = -1 \) - \( y = 2 \) - \( z = 1 \) ### Final Answer The solution to the system of equations is: \[ x = 3, \quad y = 2, \quad z = 1 \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    MODERN PUBLICATION|Exercise Exercise 4(h) (LONG ANSWER TYPE QUESTIONS)|52 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTIONS (Multiple choice question)|25 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Exercise 4(g) (LONG ANSWER TYPE QUESTIONS)|15 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos

Similar Questions

Explore conceptually related problems

Solve the following equations, using inverse of a matrix : {:(x+2y=5),(y+2z=8),(z+2x=5):}

Solve the following equations using inverse of a matrix. {:(2x-y=-2),(3x+4y=3):}

Solve the following equations, using inverse of a matrix : {:(2x+3y+3z=5),(x-2y+z=4),(3x-y-2z=3):}

Solve the following equations, using inverse of a matrix : {:(x+y+z=6),(y+3z=11),(x-2y+z=0):}

Solve the following equations, using inverse of a matrix : {:(3x-y+z=5),(2x-2y+3z=7),(x+y-z=-1):}

Solve the following equations using inverse of a matrix. {:(2x+3y=4),(4x+5y=6):}

Solve the following equations using inverse of a matrix. {:(5x+2y=3),(3x+2y=5):}

Solve the following equations using inverse of a matrix. {:(2x+5y=1),(3x+2y=7):}

Solve the following equations, using inverse of a matrix : {:(3x+4y+7z=4),(2x-y+3z=-3),(x+2y-3z=8):}

Solve the following equations, using inverse of a matrix : {:(x-2y+3z=-5),(3x+y+z=8),(2x-y+2z=1):}