Home
Class 12
MATHS
Using matrices, solve the following syst...

Using matrices, solve the following system of equations for x,y and z.
`x+y+z=3`, `y+3z=4`, `x-2y+z=0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the system of equations using matrices, we will follow these steps: 1. **Write the system of equations in matrix form**: The given equations are: \[ \begin{align*} x + y + z &= 3 \quad \text{(1)} \\ y + 3z &= 4 \quad \text{(2)} \\ x - 2y + z &= 0 \quad \text{(3)} \end{align*} \] We can express this in the form \( A \mathbf{x} = \mathbf{b} \), where: \[ A = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 3 \\ 1 & -2 & 1 \end{bmatrix}, \quad \mathbf{x} = \begin{bmatrix} x \\ y \\ z \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} 3 \\ 4 \\ 0 \end{bmatrix} \] 2. **Calculate the determinant \( \Delta \) of matrix \( A \)**: \[ \Delta = \begin{vmatrix} 1 & 1 & 1 \\ 0 & 1 & 3 \\ 1 & -2 & 1 \end{vmatrix} \] To calculate the determinant: \[ \Delta = 1 \cdot \begin{vmatrix} 1 & 3 \\ -2 & 1 \end{vmatrix} - 1 \cdot \begin{vmatrix} 0 & 3 \\ 1 & 1 \end{vmatrix} + 1 \cdot \begin{vmatrix} 0 & 1 \\ 1 & -2 \end{vmatrix} \] Calculating each of these 2x2 determinants: \[ \begin{vmatrix} 1 & 3 \\ -2 & 1 \end{vmatrix} = (1)(1) - (3)(-2) = 1 + 6 = 7 \] \[ \begin{vmatrix} 0 & 3 \\ 1 & 1 \end{vmatrix} = (0)(1) - (3)(1) = -3 \] \[ \begin{vmatrix} 0 & 1 \\ 1 & -2 \end{vmatrix} = (0)(-2) - (1)(1) = -1 \] Now substituting back: \[ \Delta = 1 \cdot 7 - 1 \cdot (-3) + 1 \cdot (-1) = 7 + 3 - 1 = 9 \] 3. **Calculate \( \Delta_x \)**: Replace the first column of \( A \) with \( \mathbf{b} \): \[ \Delta_x = \begin{vmatrix} 3 & 1 & 1 \\ 4 & 1 & 3 \\ 0 & -2 & 1 \end{vmatrix} \] Calculating this determinant: \[ \Delta_x = 3 \cdot \begin{vmatrix} 1 & 3 \\ -2 & 1 \end{vmatrix} - 1 \cdot \begin{vmatrix} 4 & 3 \\ 0 & 1 \end{vmatrix} + 1 \cdot \begin{vmatrix} 4 & 1 \\ 0 & -2 \end{vmatrix} \] Calculating the 2x2 determinants: \[ \begin{vmatrix} 1 & 3 \\ -2 & 1 \end{vmatrix} = 7 \quad \text{(calculated previously)} \] \[ \begin{vmatrix} 4 & 3 \\ 0 & 1 \end{vmatrix} = 4 \] \[ \begin{vmatrix} 4 & 1 \\ 0 & -2 \end{vmatrix} = -8 \] Now substituting back: \[ \Delta_x = 3 \cdot 7 - 1 \cdot 4 + 1 \cdot (-8) = 21 - 4 - 8 = 9 \] 4. **Calculate \( \Delta_y \)**: Replace the second column of \( A \) with \( \mathbf{b} \): \[ \Delta_y = \begin{vmatrix} 1 & 3 & 1 \\ 0 & 4 & 3 \\ 1 & 0 & 1 \end{vmatrix} \] Calculating this determinant: \[ \Delta_y = 1 \cdot \begin{vmatrix} 4 & 3 \\ 0 & 1 \end{vmatrix} - 3 \cdot \begin{vmatrix} 0 & 3 \\ 1 & 1 \end{vmatrix} + 1 \cdot \begin{vmatrix} 0 & 4 \\ 1 & 0 \end{vmatrix} \] Calculating the 2x2 determinants: \[ \begin{vmatrix} 4 & 3 \\ 0 & 1 \end{vmatrix} = 4 \] \[ \begin{vmatrix} 0 & 3 \\ 1 & 1 \end{vmatrix} = -3 \] \[ \begin{vmatrix} 0 & 4 \\ 1 & 0 \end{vmatrix} = -4 \] Now substituting back: \[ \Delta_y = 1 \cdot 4 - 3 \cdot (-3) + 1 \cdot (-4) = 4 + 9 - 4 = 9 \] 5. **Calculate \( \Delta_z \)**: Replace the third column of \( A \) with \( \mathbf{b} \): \[ \Delta_z = \begin{vmatrix} 1 & 1 & 3 \\ 0 & 1 & 4 \\ 1 & -2 & 0 \end{vmatrix} \] Calculating this determinant: \[ \Delta_z = 1 \cdot \begin{vmatrix} 1 & 4 \\ -2 & 0 \end{vmatrix} - 1 \cdot \begin{vmatrix} 0 & 4 \\ 1 & 0 \end{vmatrix} + 3 \cdot \begin{vmatrix} 0 & 1 \\ 1 & -2 \end{vmatrix} \] Calculating the 2x2 determinants: \[ \begin{vmatrix} 1 & 4 \\ -2 & 0 \end{vmatrix} = 8 \] \[ \begin{vmatrix} 0 & 4 \\ 1 & 0 \end{vmatrix} = -4 \] \[ \begin{vmatrix} 0 & 1 \\ 1 & -2 \end{vmatrix} = -1 \] Now substituting back: \[ \Delta_z = 1 \cdot 8 - 1 \cdot (-4) + 3 \cdot (-1) = 8 + 4 - 3 = 9 \] 6. **Calculate the values of \( x, y, z \)**: Using Cramer's Rule: \[ x = \frac{\Delta_x}{\Delta} = \frac{9}{9} = 1 \] \[ y = \frac{\Delta_y}{\Delta} = \frac{9}{9} = 1 \] \[ z = \frac{\Delta_z}{\Delta} = \frac{9}{9} = 1 \] Thus, the solution to the system of equations is: \[ x = 1, \quad y = 1, \quad z = 1 \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTIONS (Multiple choice question)|25 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTIONS (Fill in the blanks)|10 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Exercise 4(h) (SHORT ANSWER TYPE QUESTIONS)|10 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos

Similar Questions

Explore conceptually related problems

Using matrices, solve the following system of equations for x,y and z. x+y-z=-1 , 3x+y-2z=3 , x-y-z=-1

Using matrices, solve the following system of equations for x,y and z. 2x+3y+3z=5 , x-2y+z=-4 , 3x-y-2z=3

Using matrices, solve the following system of equations for x,y and z. 3x-2y+3z=8 , 2x+y-z=1 , 4x-3y+2z=4

Using matrices, solve the following system of equations for x,y and z. {:(x+2y+z=8),(2x+y-z=1),(x-y+z=2):}

Using matrices, solve the following system of equations for x,y and z. 2x+y+z=1 , x-2y-z=(3)/(2) , 3y-5z=9 .

Using matrices,solve the following system of equations: x+y+z=2,2x-y=3,2y+z=0

Using matrices,solve the following system of equations: x+2y+z=7,x+3z=11,2x-3y=1

Using matrices,solve the following system of equations: x+y+z=6;x+2z=73x+y+z=12

Using matrices,solve the following system of equations: x-y+z=4;2x+y-3z=0;x+y+z=2

Using matrices,solve the following system of equations: x+2y-3z=6,3x+2y-2z=3,2x-y+z=2

MODERN PUBLICATION-DETERMINANTS-Exercise 4(h) (LONG ANSWER TYPE QUESTIONS)
  1. Using matrices, solve the following system of equations: 2x=3y+5z=...

    Text Solution

    |

  2. Solve the following system of linear equations by matrix method: x+y+z...

    Text Solution

    |

  3. Using matrices, solve the following system of equations for x,y and z....

    Text Solution

    |

  4. Using matrices, solve the following system of equations for x,y and z....

    Text Solution

    |

  5. Using matrices, solve the following system of equations for x,y and z....

    Text Solution

    |

  6. Using matrices, solve the following system of equations for x,y and z....

    Text Solution

    |

  7. Using matrices, solve the following system of equations for x,y and z....

    Text Solution

    |

  8. Solve system of linear equations, using matrix method, in questions 7 ...

    Text Solution

    |

  9. Solve the following equations, using inverse of a matrix : {:(x-2y+3...

    Text Solution

    |

  10. Solve the following equations, using inverse of a matrix : {:(x+2y=5...

    Text Solution

    |

  11. Find inverse of matrix, solve the equation x-y+z=4,2x+y-3z=0,x+y+z=2

    Text Solution

    |

  12. Solve the following equations, using inverse of a matrix : {:(x+2y-3...

    Text Solution

    |

  13. 2x+3y+5z=16, 3x+ 2y-4z= 4, x + y - 2z =- 3.

    Text Solution

    |

  14. Solve the following equations, using inverse of a matrix : {:(2x+y+z...

    Text Solution

    |

  15. Solve the following equations, using inverse of a matrix : {:(2x+3y+...

    Text Solution

    |

  16. Solve the following equations, using inverse of a matrix : {:(3x+4y+...

    Text Solution

    |

  17. Solve the following equations, using inverse of a matrix : {:(8x+4y+...

    Text Solution

    |

  18. Solve the following equations, using inverse of a matrix : {:(x+y+z=...

    Text Solution

    |

  19. Solve the following equations, using inverse of a matrix : {:(5x-y+z...

    Text Solution

    |

  20. Solve the following equations, using inverse of a matrix : {:(3x-2y+...

    Text Solution

    |