Home
Class 12
MATHS
Using matrices, solve the following syst...

Using matrices, solve the following system of equations for x,y and z.
`x+y-z=-1`, `3x+y-2z=3`, `x-y-z=-1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the system of equations using matrices, we will follow these steps: ### Step 1: Write the system of equations in matrix form The given equations are: 1. \( x + y - z = -1 \) 2. \( 3x + y - 2z = 3 \) 3. \( x - y - z = -1 \) We can express these equations in the matrix form \( Ax = b \), where: - \( A \) is the coefficient matrix, - \( x \) is the column matrix of variables, and - \( b \) is the column matrix of constants. Thus, we have: \[ A = \begin{pmatrix} 1 & 1 & -1 \\ 3 & 1 & -2 \\ 1 & -1 & -1 \end{pmatrix}, \quad x = \begin{pmatrix} x \\ y \\ z \end{pmatrix}, \quad b = \begin{pmatrix} -1 \\ 3 \\ -1 \end{pmatrix} \] ### Step 2: Calculate the determinant of matrix \( A \) (denoted as \( \Delta \)) To find \( \Delta \), we calculate the determinant of matrix \( A \): \[ \Delta = \begin{vmatrix} 1 & 1 & -1 \\ 3 & 1 & -2 \\ 1 & -1 & -1 \end{vmatrix} \] Calculating the determinant: \[ \Delta = 1 \cdot \begin{vmatrix} 1 & -2 \\ -1 & -1 \end{vmatrix} - 1 \cdot \begin{vmatrix} 3 & -2 \\ 1 & -1 \end{vmatrix} - 1 \cdot \begin{vmatrix} 3 & 1 \\ 1 & -1 \end{vmatrix} \] Calculating each of the 2x2 determinants: 1. \( \begin{vmatrix} 1 & -2 \\ -1 & -1 \end{vmatrix} = (1)(-1) - (-2)(-1) = -1 - 2 = -3 \) 2. \( \begin{vmatrix} 3 & -2 \\ 1 & -1 \end{vmatrix} = (3)(-1) - (-2)(1) = -3 + 2 = -1 \) 3. \( \begin{vmatrix} 3 & 1 \\ 1 & -1 \end{vmatrix} = (3)(-1) - (1)(1) = -3 - 1 = -4 \) Now substituting back: \[ \Delta = 1(-3) - 1(-1) - 1(-4) = -3 + 1 + 4 = 2 \] ### Step 3: Calculate \( \Delta_x \), \( \Delta_y \), and \( \Delta_z \) To find \( \Delta_x \), we replace the first column of \( A \) with \( b \): \[ \Delta_x = \begin{vmatrix} -1 & 1 & -1 \\ 3 & 1 & -2 \\ -1 & -1 & -1 \end{vmatrix} \] Calculating \( \Delta_x \): \[ \Delta_x = -1 \cdot \begin{vmatrix} 1 & -2 \\ -1 & -1 \end{vmatrix} - 1 \cdot \begin{vmatrix} 3 & -2 \\ -1 & -1 \end{vmatrix} - 1 \cdot \begin{vmatrix} 3 & 1 \\ -1 & -1 \end{vmatrix} \] Calculating the 2x2 determinants: 1. Already calculated as \(-3\). 2. \( \begin{vmatrix} 3 & -2 \\ -1 & -1 \end{vmatrix} = (3)(-1) - (-2)(-1) = -3 - 2 = -5 \) 3. \( \begin{vmatrix} 3 & 1 \\ -1 & -1 \end{vmatrix} = (3)(-1) - (1)(-1) = -3 + 1 = -2 \) Now substituting back: \[ \Delta_x = -1(-3) - 1(-5) - 1(-2) = 3 + 5 + 2 = 10 \] Now, for \( \Delta_y \), we replace the second column of \( A \) with \( b \): \[ \Delta_y = \begin{vmatrix} 1 & -1 & -1 \\ 3 & 3 & -2 \\ 1 & -1 & -1 \end{vmatrix} \] Calculating \( \Delta_y \): 1. \( \begin{vmatrix} -1 & -1 \\ -1 & -1 \end{vmatrix} = 0 \) 2. \( \begin{vmatrix} 3 & -2 \\ 1 & -1 \end{vmatrix} = -1 \) 3. \( \begin{vmatrix} 3 & 3 \\ 1 & -1 \end{vmatrix} = -6 \) Now substituting back: \[ \Delta_y = 1(0) - 3(-1) + 1(-6) = 0 + 3 - 6 = -3 \] Finally, for \( \Delta_z \), we replace the third column of \( A \) with \( b \): \[ \Delta_z = \begin{vmatrix} 1 & 1 & -1 \\ 3 & 1 & 3 \\ 1 & -1 & -1 \end{vmatrix} \] Calculating \( \Delta_z \): 1. \( \begin{vmatrix} 1 & 3 \\ -1 & -1 \end{vmatrix} = 1 \) 2. \( \begin{vmatrix} 3 & 3 \\ 1 & -1 \end{vmatrix} = -6 \) 3. \( \begin{vmatrix} 3 & 1 \\ 1 & -1 \end{vmatrix} = -4 \) Now substituting back: \[ \Delta_z = 1(1) - 3(-6) + 1(-4) = 1 + 18 - 4 = 15 \] ### Step 4: Solve for \( x, y, z \) Using Cramer’s rule: \[ x = \frac{\Delta_x}{\Delta} = \frac{10}{2} = 5 \] \[ y = \frac{\Delta_y}{\Delta} = \frac{-3}{2} = -\frac{3}{2} \] \[ z = \frac{\Delta_z}{\Delta} = \frac{15}{2} = 7.5 \] ### Final Result Thus, the solution is: \[ x = 5, \quad y = -\frac{3}{2}, \quad z = 7.5 \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTIONS (Multiple choice question)|25 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTIONS (Fill in the blanks)|10 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Exercise 4(h) (SHORT ANSWER TYPE QUESTIONS)|10 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos

Similar Questions

Explore conceptually related problems

Using matrices, solve the following system of equations for x,y and z. 2x+3y+3z=5 , x-2y+z=-4 , 3x-y-2z=3

Using matrices, solve the following system of equations for x,y and z. 3x-2y+3z=8 , 2x+y-z=1 , 4x-3y+2z=4

Using matrices, solve the following system of equations for x,y and z. x+y+z=3 , y+3z=4 , x-2y+z=0

Using matrices, solve the following system of equations for x,y and z. 2x+y+z=1 , x-2y-z=(3)/(2) , 3y-5z=9 .

Using matrices, solve the following system of equations for x,y and z. {:(x+2y+z=8),(2x+y-z=1),(x-y+z=2):}

Using matrices,solve the following system of equations: x-y+z=4;2x+y-3z=0;x+y+z=2

Using matrices,solve the following system of equations: x+2y+z=7,x+3z=11,2x-3y=1

Using matrices,solve the following system of equations: 3x-y+z=5 ,2x-2y+3z=7,x+y-z=-1

Using matrices,solve the following system of equations: x+y+z=2,2x-y=3,2y+z=0

Using matrices,solve the following system of equations: x+y+z=6;x+2z=73x+y+z=12

MODERN PUBLICATION-DETERMINANTS-Exercise 4(h) (LONG ANSWER TYPE QUESTIONS)
  1. Solve the following system of linear equations by matrix method: x+y+z...

    Text Solution

    |

  2. Using matrices, solve the following system of equations for x,y and z....

    Text Solution

    |

  3. Using matrices, solve the following system of equations for x,y and z....

    Text Solution

    |

  4. Using matrices, solve the following system of equations for x,y and z....

    Text Solution

    |

  5. Using matrices, solve the following system of equations for x,y and z....

    Text Solution

    |

  6. Using matrices, solve the following system of equations for x,y and z....

    Text Solution

    |

  7. Solve system of linear equations, using matrix method, in questions 7 ...

    Text Solution

    |

  8. Solve the following equations, using inverse of a matrix : {:(x-2y+3...

    Text Solution

    |

  9. Solve the following equations, using inverse of a matrix : {:(x+2y=5...

    Text Solution

    |

  10. Find inverse of matrix, solve the equation x-y+z=4,2x+y-3z=0,x+y+z=2

    Text Solution

    |

  11. Solve the following equations, using inverse of a matrix : {:(x+2y-3...

    Text Solution

    |

  12. 2x+3y+5z=16, 3x+ 2y-4z= 4, x + y - 2z =- 3.

    Text Solution

    |

  13. Solve the following equations, using inverse of a matrix : {:(2x+y+z...

    Text Solution

    |

  14. Solve the following equations, using inverse of a matrix : {:(2x+3y+...

    Text Solution

    |

  15. Solve the following equations, using inverse of a matrix : {:(3x+4y+...

    Text Solution

    |

  16. Solve the following equations, using inverse of a matrix : {:(8x+4y+...

    Text Solution

    |

  17. Solve the following equations, using inverse of a matrix : {:(x+y+z=...

    Text Solution

    |

  18. Solve the following equations, using inverse of a matrix : {:(5x-y+z...

    Text Solution

    |

  19. Solve the following equations, using inverse of a matrix : {:(3x-2y+...

    Text Solution

    |

  20. Solve the following equations, using inverse of a matrix : {:(3x-y+z...

    Text Solution

    |