Home
Class 12
MATHS
Using matrices, solve the following syst...

Using matrices, solve the following system of equations for x,y and z.
`2x+y+z=1`, `x-2y-z=(3)/(2)`, `3y-5z=9`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the system of equations using matrices, we can follow these steps: ### Step 1: Write the system of equations in matrix form The given equations are: 1. \( 2x + y + z = 1 \) 2. \( x - 2y - z = \frac{3}{2} \) 3. \( 3y - 5z = 9 \) We can express this in the matrix form \( A \mathbf{x} = \mathbf{b} \), where: - \( A = \begin{pmatrix} 2 & 1 & 1 \\ 1 & -2 & -1 \\ 0 & 3 & -5 \end{pmatrix} \) - \( \mathbf{x} = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \) - \( \mathbf{b} = \begin{pmatrix} 1 \\ \frac{3}{2} \\ 9 \end{pmatrix} \) ### Step 2: Calculate the determinant of matrix A (\( \Delta \)) To find the determinant \( \Delta \) of matrix \( A \): \[ \Delta = \begin{vmatrix} 2 & 1 & 1 \\ 1 & -2 & -1 \\ 0 & 3 & -5 \end{vmatrix} \] Calculating this determinant: \[ \Delta = 2 \begin{vmatrix} -2 & -1 \\ 3 & -5 \end{vmatrix} - 1 \begin{vmatrix} 1 & -1 \\ 0 & -5 \end{vmatrix} + 1 \begin{vmatrix} 1 & -2 \\ 0 & 3 \end{vmatrix} \] Calculating the 2x2 determinants: \[ \Delta = 2((-2)(-5) - (-1)(3)) - 1(1 \cdot -5 - 0 \cdot -1) + 1(1 \cdot 3 - 0 \cdot -2) \] \[ = 2(10 + 3) - (-5) + 3 = 2(13) + 5 + 3 = 26 + 5 + 3 = 34 \] ### Step 3: Calculate \( \Delta_x \) Replace the first column of \( A \) with \( \mathbf{b} \) to find \( \Delta_x \): \[ \Delta_x = \begin{vmatrix} 1 & 1 & 1 \\ \frac{3}{2} & -2 & -1 \\ 9 & 3 & -5 \end{vmatrix} \] Calculating this determinant: \[ \Delta_x = 1 \begin{vmatrix} -2 & -1 \\ 3 & -5 \end{vmatrix} - 1 \begin{vmatrix} \frac{3}{2} & -1 \\ 9 & -5 \end{vmatrix} + 1 \begin{vmatrix} \frac{3}{2} & -2 \\ 9 & 3 \end{vmatrix} \] Calculating the 2x2 determinants: \[ \Delta_x = 1((-2)(-5) - (-1)(3)) - 1\left(\frac{3}{2}(-5) - (-1)(9)\right) + 1\left(\frac{3}{2}(3) - (-2)(9)\right) \] \[ = 1(10 + 3) - 1\left(-\frac{15}{2} + 9\right) + 1\left(\frac{9}{2} + 18\right) \] \[ = 13 + \frac{15}{2} - \frac{9}{2} - 18 = 13 + \frac{6}{2} - 18 = 13 + 3 - 18 = -2 \] ### Step 4: Calculate \( \Delta_y \) Replace the second column of \( A \) with \( \mathbf{b} \) to find \( \Delta_y \): \[ \Delta_y = \begin{vmatrix} 2 & 1 & 1 \\ 1 & \frac{3}{2} & -1 \\ 0 & 9 & -5 \end{vmatrix} \] Calculating this determinant: \[ \Delta_y = 2 \begin{vmatrix} \frac{3}{2} & -1 \\ 9 & -5 \end{vmatrix} - 1 \begin{vmatrix} 1 & -1 \\ 0 & -5 \end{vmatrix} + 1 \begin{vmatrix} 1 & \frac{3}{2} \\ 0 & 9 \end{vmatrix} \] Calculating the 2x2 determinants: \[ \Delta_y = 2\left(\frac{3}{2}(-5) - (-1)(9)\right) - (-5) + 9 \] \[ = 2\left(-\frac{15}{2} + 9\right) + 5 + 9 = 2\left(-\frac{15}{2} + \frac{18}{2}\right) + 14 = 2\left(\frac{3}{2}\right) + 14 = 3 + 14 = 17 \] ### Step 5: Calculate \( \Delta_z \) Replace the third column of \( A \) with \( \mathbf{b} \) to find \( \Delta_z \): \[ \Delta_z = \begin{vmatrix} 2 & 1 & 1 \\ 1 & -2 & \frac{3}{2} \\ 0 & 3 & 9 \end{vmatrix} \] Calculating this determinant: \[ \Delta_z = 2 \begin{vmatrix} -2 & \frac{3}{2} \\ 3 & 9 \end{vmatrix} - 1 \begin{vmatrix} 1 & \frac{3}{2} \\ 0 & 9 \end{vmatrix} + 1 \begin{vmatrix} 1 & -2 \\ 0 & 3 \end{vmatrix} \] Calculating the 2x2 determinants: \[ \Delta_z = 2((-2)(9) - (3)(\frac{3}{2})) - (1 \cdot 9) + 1(3) \] \[ = 2(-18 - \frac{9}{2}) - 9 + 3 = 2\left(-\frac{36}{2} - \frac{9}{2}\right) - 6 = 2\left(-\frac{45}{2}\right) - 6 \] \[ = -45 - 6 = -51 \] ### Step 6: Calculate the values of \( x, y, z \) Using Cramer's Rule: \[ x = \frac{\Delta_x}{\Delta} = \frac{-2}{34} = -\frac{1}{17} \] \[ y = \frac{\Delta_y}{\Delta} = \frac{17}{34} = \frac{1}{2} \] \[ z = \frac{\Delta_z}{\Delta} = \frac{-51}{34} = -\frac{3}{2} \] ### Final Solution Thus, the solution to the system of equations is: \[ x = -\frac{1}{17}, \quad y = \frac{1}{2}, \quad z = -\frac{3}{2} \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTIONS (Multiple choice question)|25 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTIONS (Fill in the blanks)|10 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Exercise 4(h) (SHORT ANSWER TYPE QUESTIONS)|10 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos

Similar Questions

Explore conceptually related problems

Using matrices, solve the following system of equations for x,y and z. x+y+z=3 , y+3z=4 , x-2y+z=0

Using matrices, solve the following system of equations for x,y and z. 2x+3y+3z=5 , x-2y+z=-4 , 3x-y-2z=3

Using matrices, solve the following system of equations for x,y and z. x+y-z=-1 , 3x+y-2z=3 , x-y-z=-1

Using matrices, solve the following system of equations for x,y and z. 3x-2y+3z=8 , 2x+y-z=1 , 4x-3y+2z=4

Using matrices, solve the following system of equations for x,y and z. {:(x+2y+z=8),(2x+y-z=1),(x-y+z=2):}

Using matrices,solve the following system of equations: x+y+z=2,2x-y=3,2y+z=0

Using matrices,solve the following system of equations: x-y+z=4;2x+y-3z=0;x+y+z=2

Using matrices,solve the following system of equations: x+2y+z=7,x+3z=11,2x-3y=1

Using matrices,solve the following system of equations: x+y+z=6;x+2z=73x+y+z=12

Using matrices,solve the following system of equations: 3x-y+z=5 ,2x-2y+3z=7,x+y-z=-1

MODERN PUBLICATION-DETERMINANTS-Exercise 4(h) (LONG ANSWER TYPE QUESTIONS)
  1. Using matrices, solve the following system of equations for x,y and z....

    Text Solution

    |

  2. Using matrices, solve the following system of equations for x,y and z....

    Text Solution

    |

  3. Using matrices, solve the following system of equations for x,y and z....

    Text Solution

    |

  4. Solve system of linear equations, using matrix method, in questions 7 ...

    Text Solution

    |

  5. Solve the following equations, using inverse of a matrix : {:(x-2y+3...

    Text Solution

    |

  6. Solve the following equations, using inverse of a matrix : {:(x+2y=5...

    Text Solution

    |

  7. Find inverse of matrix, solve the equation x-y+z=4,2x+y-3z=0,x+y+z=2

    Text Solution

    |

  8. Solve the following equations, using inverse of a matrix : {:(x+2y-3...

    Text Solution

    |

  9. 2x+3y+5z=16, 3x+ 2y-4z= 4, x + y - 2z =- 3.

    Text Solution

    |

  10. Solve the following equations, using inverse of a matrix : {:(2x+y+z...

    Text Solution

    |

  11. Solve the following equations, using inverse of a matrix : {:(2x+3y+...

    Text Solution

    |

  12. Solve the following equations, using inverse of a matrix : {:(3x+4y+...

    Text Solution

    |

  13. Solve the following equations, using inverse of a matrix : {:(8x+4y+...

    Text Solution

    |

  14. Solve the following equations, using inverse of a matrix : {:(x+y+z=...

    Text Solution

    |

  15. Solve the following equations, using inverse of a matrix : {:(5x-y+z...

    Text Solution

    |

  16. Solve the following equations, using inverse of a matrix : {:(3x-2y+...

    Text Solution

    |

  17. Solve the following equations, using inverse of a matrix : {:(3x-y+z...

    Text Solution

    |

  18. Solve the following equations, using inverse of a matrix : {:(4x+3y+...

    Text Solution

    |

  19. 2/x+3/y+10/z=4, 4/x-6/y+5/z=1, 6/x+9/y-20/z=2

    Text Solution

    |

  20. Solve the following system of equations : {:((1)/(x)-(1)/(y)+(2)/(z)...

    Text Solution

    |