Home
Class 12
MATHS
Solve the following equations, using inv...

Solve the following equations, using inverse of a matrix :
`{:(x+2y=5),(y+2z=8),(z+2x=5):}`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the system of equations using the inverse of a matrix, we start with the given equations: 1. \( x + 2y = 5 \) 2. \( y + 2z = 8 \) 3. \( z + 2x = 5 \) We can express this system in the matrix form \( Ax = b \), where: - \( A \) is the coefficient matrix, - \( x \) is the variable matrix, - \( b \) is the constant matrix. ### Step 1: Formulate the matrices The coefficient matrix \( A \) and the constant matrix \( b \) can be written as follows: \[ A = \begin{bmatrix} 1 & 2 & 0 \\ 0 & 1 & 2 \\ 2 & 0 & 1 \end{bmatrix}, \quad x = \begin{bmatrix} x \\ y \\ z \end{bmatrix}, \quad b = \begin{bmatrix} 5 \\ 8 \\ 5 \end{bmatrix} \] ### Step 2: Find the determinant of matrix \( A \) To find the inverse of matrix \( A \), we first need to calculate its determinant \( |A| \). \[ |A| = 1 \cdot (1 \cdot 1 - 2 \cdot 0) - 2 \cdot (0 \cdot 1 - 2 \cdot 2) + 0 \cdot (0 \cdot 0 - 1 \cdot 2) \] Calculating the determinant: \[ |A| = 1 \cdot (1) - 2 \cdot (-4) + 0 = 1 + 8 = 9 \] ### Step 3: Find the cofactor matrix of \( A \) Next, we calculate the cofactor matrix \( C \) of \( A \): \[ C = \begin{bmatrix} C_{11} & C_{12} & C_{13} \\ C_{21} & C_{22} & C_{23} \\ C_{31} & C_{32} & C_{33} \end{bmatrix} \] Calculating each cofactor: - \( C_{11} = | \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} | = 1 \) - \( C_{12} = -| \begin{bmatrix} 0 & 2 \\ 2 & 1 \end{bmatrix} | = -(-4) = 4 \) - \( C_{13} = | \begin{bmatrix} 0 & 1 \\ 2 & 0 \end{bmatrix} | = -2 \) - \( C_{21} = -| \begin{bmatrix} 2 & 0 \\ 1 & 1 \end{bmatrix} | = -2 \) - \( C_{22} = | \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix} | = 1 \) - \( C_{23} = -| \begin{bmatrix} 1 & 2 \\ 2 & 0 \end{bmatrix} | = -(-4) = 4 \) - \( C_{31} = | \begin{bmatrix} 2 & 0 \\ 1 & 2 \end{bmatrix} | = 4 \) - \( C_{32} = -| \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} | = -2 \) - \( C_{33} = | \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} | = 1 \) Thus, the cofactor matrix \( C \) is: \[ C = \begin{bmatrix} 1 & 4 & -2 \\ -2 & 1 & 4 \\ 4 & -2 & 1 \end{bmatrix} \] ### Step 4: Find the adjoint of \( A \) The adjoint of \( A \) is the transpose of the cofactor matrix \( C \): \[ \text{adj}(A) = C^T = \begin{bmatrix} 1 & -2 & 4 \\ 4 & 1 & -2 \\ -2 & 4 & 1 \end{bmatrix} \] ### Step 5: Find the inverse of matrix \( A \) The inverse of matrix \( A \) is given by: \[ A^{-1} = \frac{1}{|A|} \cdot \text{adj}(A) = \frac{1}{9} \begin{bmatrix} 1 & -2 & 4 \\ 4 & 1 & -2 \\ -2 & 4 & 1 \end{bmatrix} \] ### Step 6: Solve for \( x \) Now, we can find \( x \) using the equation \( x = A^{-1}b \): \[ x = \frac{1}{9} \begin{bmatrix} 1 & -2 & 4 \\ 4 & 1 & -2 \\ -2 & 4 & 1 \end{bmatrix} \begin{bmatrix} 5 \\ 8 \\ 5 \end{bmatrix} \] Calculating the product: \[ x = \frac{1}{9} \begin{bmatrix} 1 \cdot 5 + (-2) \cdot 8 + 4 \cdot 5 \\ 4 \cdot 5 + 1 \cdot 8 + (-2) \cdot 5 \\ -2 \cdot 5 + 4 \cdot 8 + 1 \cdot 5 \end{bmatrix} \] Calculating each component: 1. \( 5 - 16 + 20 = 9 \) 2. \( 20 + 8 - 10 = 18 \) 3. \( -10 + 32 + 5 = 27 \) Thus, we have: \[ x = \frac{1}{9} \begin{bmatrix} 9 \\ 18 \\ 27 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \] ### Final Solution The solution to the system of equations is: \[ x = 1, \quad y = 2, \quad z = 3 \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTIONS (Multiple choice question)|25 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTIONS (Fill in the blanks)|10 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Exercise 4(h) (SHORT ANSWER TYPE QUESTIONS)|10 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos

Similar Questions

Explore conceptually related problems

Solve the following equations, using inverse of a matrix : {:(x-2y+3z=-5),(3x+y+z=8),(2x-y+2z=1):}

Solve the following equations using inverse of a matrix. {:(5x+2y=3),(3x+2y=5):}

Solve the following equations, using inverse of a matrix : {:(x+y+z=6),(y+3z=11),(x-2y+z=0):}

Solve the following equations using inverse of a matrix. {:(2x+5y=1),(3x+2y=7):}

Solve the following equations using inverse of a matrix. {:(2x+3y=4),(4x+5y=6):}

Solve the following equations using inverse of a matrix. {:(2x-y=-2),(3x+4y=3):}

Solve the following equations, using inverse of a matrix : {:(3x-y+z=5),(2x-2y+3z=7),(x+y-z=-1):}

Solve the following equations, using inverse of a matrix : {:(4x+3y+z=10),(3x-y+2z=8),(x-2y-3z=-10):}

Solve the following equations, using inverse of a matrix : {:(x+2y-3z=-4),(2x+3y+2z=2),(3x-3y-4z=11):}

Solve the following equations using inverse of a matrix. x+y=5 , y+z=3 , z+x=4

MODERN PUBLICATION-DETERMINANTS-Exercise 4(h) (LONG ANSWER TYPE QUESTIONS)
  1. Solve system of linear equations, using matrix method, in questions 7 ...

    Text Solution

    |

  2. Solve the following equations, using inverse of a matrix : {:(x-2y+3...

    Text Solution

    |

  3. Solve the following equations, using inverse of a matrix : {:(x+2y=5...

    Text Solution

    |

  4. Find inverse of matrix, solve the equation x-y+z=4,2x+y-3z=0,x+y+z=2

    Text Solution

    |

  5. Solve the following equations, using inverse of a matrix : {:(x+2y-3...

    Text Solution

    |

  6. 2x+3y+5z=16, 3x+ 2y-4z= 4, x + y - 2z =- 3.

    Text Solution

    |

  7. Solve the following equations, using inverse of a matrix : {:(2x+y+z...

    Text Solution

    |

  8. Solve the following equations, using inverse of a matrix : {:(2x+3y+...

    Text Solution

    |

  9. Solve the following equations, using inverse of a matrix : {:(3x+4y+...

    Text Solution

    |

  10. Solve the following equations, using inverse of a matrix : {:(8x+4y+...

    Text Solution

    |

  11. Solve the following equations, using inverse of a matrix : {:(x+y+z=...

    Text Solution

    |

  12. Solve the following equations, using inverse of a matrix : {:(5x-y+z...

    Text Solution

    |

  13. Solve the following equations, using inverse of a matrix : {:(3x-2y+...

    Text Solution

    |

  14. Solve the following equations, using inverse of a matrix : {:(3x-y+z...

    Text Solution

    |

  15. Solve the following equations, using inverse of a matrix : {:(4x+3y+...

    Text Solution

    |

  16. 2/x+3/y+10/z=4, 4/x-6/y+5/z=1, 6/x+9/y-20/z=2

    Text Solution

    |

  17. Solve the following system of equations : {:((1)/(x)-(1)/(y)+(2)/(z)...

    Text Solution

    |

  18. Solve the following system of equations : {:((1)/(x)-(1)/(y)+(2)/(z)...

    Text Solution

    |

  19. If A=(2-3 5 3 2-4 1 1-2), find A^(-1) . Using A^(-1) solve the fol...

    Text Solution

    |

  20. If A=((2,-3,5),(3,2,-4),(1,1,-2)) find A^(-1). Use it to solve the sys...

    Text Solution

    |