Home
Class 12
MATHS
Solve the following equations, using inv...

Solve the following equations, using inverse of a matrix :
`{:(x+2y-3z=-4),(2x+3y+2z=2),(3x-3y-4z=11):}`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the system of equations using the inverse of a matrix, we start with the equations given: 1. \( x + 2y - 3z = -4 \) 2. \( 2x + 3y + 2z = 2 \) 3. \( 3x - 3y - 4z = 11 \) We can express this system in the matrix form \( Ax = b \), where: - \( A \) is the coefficient matrix, - \( x \) is the column matrix of variables, and - \( b \) is the column matrix of constants. ### Step 1: Set up the matrices The coefficient matrix \( A \) and the constant matrix \( b \) are defined as follows: \[ A = \begin{pmatrix} 1 & 2 & -3 \\ 2 & 3 & 2 \\ 3 & -3 & -4 \end{pmatrix}, \quad x = \begin{pmatrix} x \\ y \\ z \end{pmatrix}, \quad b = \begin{pmatrix} -4 \\ 2 \\ 11 \end{pmatrix} \] ### Step 2: Find the determinant of matrix \( A \) To find the inverse of matrix \( A \), we first need to calculate its determinant \( |A| \). \[ |A| = 1 \cdot (3 \cdot (-4) - 2 \cdot (-3)) - 2 \cdot (2 \cdot (-4) - 2 \cdot 3) - 3 \cdot (2 \cdot (-3) - 3 \cdot 3) \] Calculating each term: \[ |A| = 1 \cdot (-12 + 6) - 2 \cdot (-8 - 6) - 3 \cdot (-6 - 9) \] \[ = 1 \cdot (-6) - 2 \cdot (-14) - 3 \cdot (-15) \] \[ = -6 + 28 + 45 \] \[ = 67 \] ### Step 3: Find the adjoint of matrix \( A \) Next, we need to find the adjoint of \( A \). The adjoint is the transpose of the cofactor matrix. To find the cofactor matrix, we calculate the minors for each element of \( A \) and apply the checkerboard pattern of signs: \[ \text{Cofactor}(A) = \begin{pmatrix} C_{11} & C_{12} & C_{13} \\ C_{21} & C_{22} & C_{23} \\ C_{31} & C_{32} & C_{33} \end{pmatrix} \] Calculating the cofactors: 1. \( C_{11} = \begin{vmatrix} 3 & 2 \\ -3 & -4 \end{vmatrix} = (3)(-4) - (2)(-3) = -12 + 6 = -6 \) 2. \( C_{12} = -\begin{vmatrix} 2 & 2 \\ 3 & -4 \end{vmatrix} = -((2)(-4) - (2)(3)) = -(-8 - 6) = 14 \) 3. \( C_{13} = \begin{vmatrix} 2 & 3 \\ 3 & -3 \end{vmatrix} = (2)(-3) - (3)(3) = -6 - 9 = -15 \) 4. \( C_{21} = -\begin{vmatrix} 2 & -3 \\ -3 & -4 \end{vmatrix} = -((2)(-4) - (-3)(-3)) = -(-8 - 9) = 17 \) 5. \( C_{22} = \begin{vmatrix} 1 & -3 \\ 3 & -4 \end{vmatrix} = (1)(-4) - (-3)(3) = -4 + 9 = 5 \) 6. \( C_{23} = -\begin{vmatrix} 1 & 2 \\ 3 & -3 \end{vmatrix} = -((1)(-3) - (2)(3)) = -(-3 - 6) = 9 \) 7. \( C_{31} = \begin{vmatrix} 2 & 2 \\ 3 & 2 \end{vmatrix} = (2)(2) - (2)(3) = 4 - 6 = -2 \) 8. \( C_{32} = -\begin{vmatrix} 1 & -3 \\ 2 & 2 \end{vmatrix} = -((1)(2) - (-3)(2)) = -2 + 6 = -4 \) 9. \( C_{33} = \begin{vmatrix} 1 & 2 \\ 2 & 3 \end{vmatrix} = (1)(3) - (2)(2) = 3 - 4 = -1 \) Thus, the cofactor matrix is: \[ \text{Cofactor}(A) = \begin{pmatrix} -6 & 14 & -15 \\ 17 & 5 & 9 \\ -2 & -4 & -1 \end{pmatrix} \] Now, we take the transpose to get the adjoint: \[ \text{Adj}(A) = \begin{pmatrix} -6 & 17 & -2 \\ 14 & 5 & -4 \\ -15 & 9 & -1 \end{pmatrix} \] ### Step 4: Calculate the inverse of matrix \( A \) The inverse of \( A \) is given by: \[ A^{-1} = \frac{1}{|A|} \cdot \text{Adj}(A) = \frac{1}{67} \begin{pmatrix} -6 & 17 & -2 \\ 14 & 5 & -4 \\ -15 & 9 & -1 \end{pmatrix} \] ### Step 5: Solve for \( x \) Now we can find \( x \) using the formula \( x = A^{-1}b \): \[ x = \frac{1}{67} \begin{pmatrix} -6 & 17 & -2 \\ 14 & 5 & -4 \\ -15 & 9 & -1 \end{pmatrix} \begin{pmatrix} -4 \\ 2 \\ 11 \end{pmatrix} \] Calculating the product: 1. First row: \( (-6)(-4) + (17)(2) + (-2)(11) = 24 + 34 - 22 = 36 \) 2. Second row: \( (14)(-4) + (5)(2) + (-4)(11) = -56 + 10 - 44 = -90 \) 3. Third row: \( (-15)(-4) + (9)(2) + (-1)(11) = 60 + 18 - 11 = 67 \) Thus, we have: \[ x = \frac{1}{67} \begin{pmatrix} 36 \\ -90 \\ 67 \end{pmatrix} \] ### Step 6: Final values of \( x, y, z \) Calculating each variable: \[ x = \frac{36}{67}, \quad y = \frac{-90}{67}, \quad z = \frac{67}{67} = 1 \] ### Conclusion Thus, the solution to the system of equations is: \[ x = 3, \quad y = -2, \quad z = 1 \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTIONS (Multiple choice question)|25 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTIONS (Fill in the blanks)|10 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Exercise 4(h) (SHORT ANSWER TYPE QUESTIONS)|10 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos

Similar Questions

Explore conceptually related problems

Solve the following equations, using inverse of a matrix : {:(3x-2y+3z=8),(2x+y-z=1),(4x-3y+2z=4):}

Solve the following equations, using inverse of a matrix : {:(2x+3y+3z=5),(x-2y+z=4),(3x-y-2z=3):}

Solve the following equations, using inverse of a matrix : {:(5x-y+z=4),(3x+2y-5z=2),(x+3y-2z=5):}

Solve the following equations, using inverse of a matrix : {:(x-2y+3z=-5),(3x+y+z=8),(2x-y+2z=1):}

Solve the following equations using inverse of a matrix. {:(2x-y=-2),(3x+4y=3):}

Solve the following equations using inverse of a matrix. {:(2x+3y=4),(4x+5y=6):}

Solve the following equations, using inverse of a matrix : {:(3x+4y+7z=4),(2x-y+3z=-3),(x+2y-3z=8):}

Solve the following equations, using inverse of a matrix : {:(4x+3y+z=10),(3x-y+2z=8),(x-2y-3z=-10):}

Solve the following equations, using inverse of a matrix : {:(x+y+z=6),(y+3z=11),(x-2y+z=0):}

MODERN PUBLICATION-DETERMINANTS-Exercise 4(h) (LONG ANSWER TYPE QUESTIONS)
  1. Solve the following equations, using inverse of a matrix : {:(x+2y=5...

    Text Solution

    |

  2. Find inverse of matrix, solve the equation x-y+z=4,2x+y-3z=0,x+y+z=2

    Text Solution

    |

  3. Solve the following equations, using inverse of a matrix : {:(x+2y-3...

    Text Solution

    |

  4. 2x+3y+5z=16, 3x+ 2y-4z= 4, x + y - 2z =- 3.

    Text Solution

    |

  5. Solve the following equations, using inverse of a matrix : {:(2x+y+z...

    Text Solution

    |

  6. Solve the following equations, using inverse of a matrix : {:(2x+3y+...

    Text Solution

    |

  7. Solve the following equations, using inverse of a matrix : {:(3x+4y+...

    Text Solution

    |

  8. Solve the following equations, using inverse of a matrix : {:(8x+4y+...

    Text Solution

    |

  9. Solve the following equations, using inverse of a matrix : {:(x+y+z=...

    Text Solution

    |

  10. Solve the following equations, using inverse of a matrix : {:(5x-y+z...

    Text Solution

    |

  11. Solve the following equations, using inverse of a matrix : {:(3x-2y+...

    Text Solution

    |

  12. Solve the following equations, using inverse of a matrix : {:(3x-y+z...

    Text Solution

    |

  13. Solve the following equations, using inverse of a matrix : {:(4x+3y+...

    Text Solution

    |

  14. 2/x+3/y+10/z=4, 4/x-6/y+5/z=1, 6/x+9/y-20/z=2

    Text Solution

    |

  15. Solve the following system of equations : {:((1)/(x)-(1)/(y)+(2)/(z)...

    Text Solution

    |

  16. Solve the following system of equations : {:((1)/(x)-(1)/(y)+(2)/(z)...

    Text Solution

    |

  17. If A=(2-3 5 3 2-4 1 1-2), find A^(-1) . Using A^(-1) solve the fol...

    Text Solution

    |

  18. If A=((2,-3,5),(3,2,-4),(1,1,-2)) find A^(-1). Use it to solve the sys...

    Text Solution

    |

  19. If A=[[3,2,1],[4,-1,2],[7,3,-3]] then find A^(-1) and hence solve the...

    Text Solution

    |

  20. If A=[{:(3,1,2),(3,2,-3),(2,0,-1):}] , find A^(-1). Hence, solve the s...

    Text Solution

    |