Home
Class 12
MATHS
Solve the following equations, using inv...

Solve the following equations, using inverse of a matrix :
`{:(2x+3y+3z=5),(x-2y+z=4),(3x-y-2z=3):}`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the system of equations using the inverse of a matrix, we will follow these steps: ### Step 1: Write the equations in matrix form We have the equations: 1. \(2x + 3y + 3z = 5\) 2. \(x - 2y + z = 4\) 3. \(3x - y - 2z = 3\) We can express this in the form \(Ax = b\), where: - \(A = \begin{pmatrix} 2 & 3 & 3 \\ 1 & -2 & 1 \\ 3 & -1 & -2 \end{pmatrix}\) - \(x = \begin{pmatrix} x \\ y \\ z \end{pmatrix}\) - \(b = \begin{pmatrix} 5 \\ 4 \\ 3 \end{pmatrix}\) ### Step 2: Find the determinant of matrix \(A\) To find the determinant of \(A\), we use the formula for the determinant of a 3x3 matrix: \[ \text{det}(A) = a(ei - fh) - b(di - fg) + c(dh - eg) \] where \(A = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix}\). Calculating the determinant: \[ \text{det}(A) = 2((-2)(-2) - (1)(-1)) - 3(1(-2) - (1)(3)) + 3(1(-1) - (-2)(3)) \] Calculating each part: - \(= 2(4 + 1) - 3(-2 - 3) + 3(-1 + 6)\) - \(= 2(5) + 3(5) + 3(5)\) - \(= 10 + 15 + 15 = 40\) ### Step 3: Find the adjoint of matrix \(A\) The adjoint of \(A\) is the transpose of the cofactor matrix. We calculate the cofactor matrix \(C\): 1. For \(C_{11}\): \(C_{11} = (-2)(-2) - (1)(-1) = 4 + 1 = 5\) 2. For \(C_{12}\): \(C_{12} = -((1)(-2) - (1)(3)) = -(-2 - 3) = 5\) 3. For \(C_{13}\): \(C_{13} = (1)(-1) - (-2)(3) = -1 + 6 = 5\) 4. For \(C_{21}\): \(C_{21} = -((3)(-2) - (3)(-1)) = -(-6 + 3) = 3\) 5. For \(C_{22}\): \(C_{22} = (2)(-2) - (3)(3) = -4 - 9 = -13\) 6. For \(C_{23}\): \(C_{23} = -((2)(-1) - (3)(3)) = -(-2 - 9) = 11\) 7. For \(C_{31}\): \(C_{31} = (3)(-2) - (3)(-1) = -6 + 3 = -3\) 8. For \(C_{32}\): \(C_{32} = -((2)(-2) - (3)(1)) = -(-4 - 3) = 7\) 9. For \(C_{33}\): \(C_{33} = (2)(-1) - (3)(1) = -2 - 3 = -5\) The cofactor matrix \(C\) is: \[ C = \begin{pmatrix} 5 & 5 & 5 \\ 3 & -13 & 11 \\ -3 & 7 & -5 \end{pmatrix} \] Now, the adjoint of \(A\) is the transpose of \(C\): \[ \text{adj}(A) = C^T = \begin{pmatrix} 5 & 3 & -3 \\ 5 & -13 & 7 \\ 5 & 11 & -5 \end{pmatrix} \] ### Step 4: Calculate the inverse of matrix \(A\) The inverse of \(A\) is given by: \[ A^{-1} = \frac{1}{\text{det}(A)} \cdot \text{adj}(A) = \frac{1}{40} \begin{pmatrix} 5 & 3 & -3 \\ 5 & -13 & 7 \\ 5 & 11 & -5 \end{pmatrix} \] ### Step 5: Solve for \(x\) Now we can find \(x\) by multiplying \(A^{-1}\) with \(b\): \[ x = A^{-1}b = \frac{1}{40} \begin{pmatrix} 5 & 3 & -3 \\ 5 & -13 & 7 \\ 5 & 11 & -5 \end{pmatrix} \begin{pmatrix} 5 \\ 4 \\ 3 \end{pmatrix} \] Calculating the multiplication: 1. First row: \(5 \cdot 5 + 3 \cdot 4 - 3 \cdot 3 = 25 + 12 - 9 = 28\) 2. Second row: \(5 \cdot 5 - 13 \cdot 4 + 7 \cdot 3 = 25 - 52 + 21 = -6\) 3. Third row: \(5 \cdot 5 + 11 \cdot 4 - 5 \cdot 3 = 25 + 44 - 15 = 54\) So we have: \[ x = \frac{1}{40} \begin{pmatrix} 28 \\ -6 \\ 54 \end{pmatrix} = \begin{pmatrix} \frac{28}{40} \\ \frac{-6}{40} \\ \frac{54}{40} \end{pmatrix} = \begin{pmatrix} \frac{7}{10} \\ \frac{-3}{20} \\ \frac{27}{20} \end{pmatrix} \] ### Final Solution Thus, the solution to the system of equations is: - \(x = \frac{7}{10}\) - \(y = \frac{-3}{20}\) - \(z = \frac{27}{20}\)
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTIONS (Multiple choice question)|25 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTIONS (Fill in the blanks)|10 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Exercise 4(h) (SHORT ANSWER TYPE QUESTIONS)|10 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos

Similar Questions

Explore conceptually related problems

Solve the following equations, using inverse of a matrix : {:(x-2y+3z=-5),(3x+y+z=8),(2x-y+2z=1):}

Solve the following equations, using inverse of a matrix : {:(3x-y+z=5),(2x-2y+3z=7),(x+y-z=-1):}

Solve the following equations, using inverse of a matrix : {:(5x-y+z=4),(3x+2y-5z=2),(x+3y-2z=5):}

Solve the following equations, using inverse of a matrix : {:(3x-2y+3z=8),(2x+y-z=1),(4x-3y+2z=4):}

Solve the following equations, using inverse of a matrix : {:(4x+3y+z=10),(3x-y+2z=8),(x-2y-3z=-10):}

Solve the following equations, using inverse of a matrix : {:(x+2y-3z=-4),(2x+3y+2z=2),(3x-3y-4z=11):}

Solve the following equations, using inverse of a matrix : {:(3x+4y+7z=4),(2x-y+3z=-3),(x+2y-3z=8):}

Solve the following equations using inverse of a matrix. {:(2x+3y=4),(4x+5y=6):}

Solve the following equations, using inverse of a matrix : {:(x+y+z=6),(y+3z=11),(x-2y+z=0):}

MODERN PUBLICATION-DETERMINANTS-Exercise 4(h) (LONG ANSWER TYPE QUESTIONS)
  1. 2x+3y+5z=16, 3x+ 2y-4z= 4, x + y - 2z =- 3.

    Text Solution

    |

  2. Solve the following equations, using inverse of a matrix : {:(2x+y+z...

    Text Solution

    |

  3. Solve the following equations, using inverse of a matrix : {:(2x+3y+...

    Text Solution

    |

  4. Solve the following equations, using inverse of a matrix : {:(3x+4y+...

    Text Solution

    |

  5. Solve the following equations, using inverse of a matrix : {:(8x+4y+...

    Text Solution

    |

  6. Solve the following equations, using inverse of a matrix : {:(x+y+z=...

    Text Solution

    |

  7. Solve the following equations, using inverse of a matrix : {:(5x-y+z...

    Text Solution

    |

  8. Solve the following equations, using inverse of a matrix : {:(3x-2y+...

    Text Solution

    |

  9. Solve the following equations, using inverse of a matrix : {:(3x-y+z...

    Text Solution

    |

  10. Solve the following equations, using inverse of a matrix : {:(4x+3y+...

    Text Solution

    |

  11. 2/x+3/y+10/z=4, 4/x-6/y+5/z=1, 6/x+9/y-20/z=2

    Text Solution

    |

  12. Solve the following system of equations : {:((1)/(x)-(1)/(y)+(2)/(z)...

    Text Solution

    |

  13. Solve the following system of equations : {:((1)/(x)-(1)/(y)+(2)/(z)...

    Text Solution

    |

  14. If A=(2-3 5 3 2-4 1 1-2), find A^(-1) . Using A^(-1) solve the fol...

    Text Solution

    |

  15. If A=((2,-3,5),(3,2,-4),(1,1,-2)) find A^(-1). Use it to solve the sys...

    Text Solution

    |

  16. If A=[[3,2,1],[4,-1,2],[7,3,-3]] then find A^(-1) and hence solve the...

    Text Solution

    |

  17. If A=[{:(3,1,2),(3,2,-3),(2,0,-1):}] , find A^(-1). Hence, solve the s...

    Text Solution

    |

  18. If A=[{:(1,1,1),(1,0,2),(3,1,1):}], find A^(-1). Hence, solve the syst...

    Text Solution

    |

  19. If A=((2,-3,5),(3,2,-4),(1,1,-2)) find A^(-1). Use it to solve the sys...

    Text Solution

    |

  20. Given that A=[{:(1,-1,0),(2,3,4),(0,1,2):}] and B=[{:(2,2,-4),(-4,2,-4...

    Text Solution

    |