Home
Class 12
MATHS
Solve the following equations, using inv...

Solve the following equations, using inverse of a matrix :
`{:(3x+4y+7z=4),(2x-y+3z=-3),(x+2y-3z=8):}`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given system of equations using the inverse of a matrix, we can follow these steps: ### Step 1: Write the equations in matrix form The given equations are: 1. \(3x + 4y + 7z = 4\) 2. \(2x - y + 3z = -3\) 3. \(x + 2y - 3z = 8\) We can express this in the form \(AX = B\), where: \[ A = \begin{pmatrix} 3 & 4 & 7 \\ 2 & -1 & 3 \\ 1 & 2 & -3 \end{pmatrix}, \quad X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}, \quad B = \begin{pmatrix} 4 \\ -3 \\ 8 \end{pmatrix} \] ### Step 2: Find the determinant of matrix \(A\) To find the inverse of matrix \(A\), we first need to calculate its determinant. The determinant of a \(3 \times 3\) matrix is given by: \[ \text{det}(A) = a(ei - fh) - b(di - fg) + c(dh - eg) \] For our matrix \(A\): \[ \text{det}(A) = 3((-1)(-3) - (3)(2)) - 4((2)(-3) - (3)(1)) + 7((2)(2) - (-1)(1)) \] Calculating this step by step: - \(3(3 - 6) = 3(-3) = -9\) - \(-4(-6 - 3) = -4(-9) = 36\) - \(7(4 + 1) = 7(5) = 35\) Now, summing these values: \[ \text{det}(A) = -9 + 36 + 35 = 62 \] ### Step 3: Find the adjoint of matrix \(A\) The adjoint of a matrix is the transpose of its cofactor matrix. We calculate the cofactor matrix \(C\) of \(A\): \[ C = \begin{pmatrix} \text{Cofactor}_{11} & \text{Cofactor}_{12} & \text{Cofactor}_{13} \\ \text{Cofactor}_{21} & \text{Cofactor}_{22} & \text{Cofactor}_{23} \\ \text{Cofactor}_{31} & \text{Cofactor}_{32} & \text{Cofactor}_{33} \end{pmatrix} \] Calculating each cofactor: - \(\text{Cofactor}_{11} = (-1)^{1+1} \cdot \text{det}\begin{pmatrix}-1 & 3 \\ 2 & -3\end{pmatrix} = 3 + 6 = 9\) - \(\text{Cofactor}_{12} = (-1)^{1+2} \cdot \text{det}\begin{pmatrix}2 & 3 \\ 1 & -3\end{pmatrix} = -(-6 - 3) = 9\) - \(\text{Cofactor}_{13} = (-1)^{1+3} \cdot \text{det}\begin{pmatrix}2 & -1 \\ 1 & 2\end{pmatrix} = 4 + 1 = 5\) Continuing this for all elements, we get: \[ C = \begin{pmatrix} 9 & 9 & 5 \\ -6 & -9 & -3 \\ -7 & -5 & 4 \end{pmatrix} \] Now, the adjoint \(A^*\) is the transpose of \(C\): \[ A^* = \begin{pmatrix} 9 & -6 & -7 \\ 9 & -9 & -5 \\ 5 & -3 & 4 \end{pmatrix} \] ### Step 4: Find the inverse of matrix \(A\) The inverse of matrix \(A\) is given by: \[ A^{-1} = \frac{1}{\text{det}(A)} A^* \] Thus, \[ A^{-1} = \frac{1}{62} \begin{pmatrix} 9 & -6 & -7 \\ 9 & -9 & -5 \\ 5 & -3 & 4 \end{pmatrix} \] ### Step 5: Multiply \(A^{-1}\) with \(B\) Now we can find \(X\) by multiplying \(A^{-1}\) with \(B\): \[ X = A^{-1}B = \frac{1}{62} \begin{pmatrix} 9 & -6 & -7 \\ 9 & -9 & -5 \\ 5 & -3 & 4 \end{pmatrix} \begin{pmatrix} 4 \\ -3 \\ 8 \end{pmatrix} \] Calculating this product: - First row: \(9 \cdot 4 + (-6) \cdot (-3) + (-7) \cdot 8 = 36 + 18 - 56 = -2\) - Second row: \(9 \cdot 4 + (-9) \cdot (-3) + (-5) \cdot 8 = 36 + 27 - 40 = 23\) - Third row: \(5 \cdot 4 + (-3) \cdot (-3) + 4 \cdot 8 = 20 + 9 + 32 = 61\) Thus, \[ X = \frac{1}{62} \begin{pmatrix} -2 \\ 23 \\ 61 \end{pmatrix} \] ### Step 6: Final solution Calculating the final values: \[ x = \frac{-2}{62}, \quad y = \frac{23}{62}, \quad z = \frac{61}{62} \] This gives us: \[ x = -\frac{1}{31}, \quad y = \frac{23}{62}, \quad z = \frac{61}{62} \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTIONS (Multiple choice question)|25 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTIONS (Fill in the blanks)|10 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Exercise 4(h) (SHORT ANSWER TYPE QUESTIONS)|10 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos

Similar Questions

Explore conceptually related problems

Solve the following equations, using inverse of a matrix : {:(3x-y+z=5),(2x-2y+3z=7),(x+y-z=-1):}

Solve the following equations, using inverse of a matrix : {:(4x+3y+z=10),(3x-y+2z=8),(x-2y-3z=-10):}

Solve the following equations, using inverse of a matrix : {:(8x+4y+3z=18),(2x+y+z=5),(x+2y+z=5):}

Solve the following equations, using inverse of a matrix : {:(3x-2y+3z=8),(2x+y-z=1),(4x-3y+2z=4):}

Solve the following equations, using inverse of a matrix : {:(x+2y-3z=-4),(2x+3y+2z=2),(3x-3y-4z=11):}

Solve the following equations, using inverse of a matrix : {:(2x+3y+3z=5),(x-2y+z=4),(3x-y-2z=3):}

Solve the following equations, using inverse of a matrix : {:(x+y+z=6),(y+3z=11),(x-2y+z=0):}

Solve the following equations, using inverse of a matrix : {:(5x-y+z=4),(3x+2y-5z=2),(x+3y-2z=5):}

Solve the following equations, using inverse of a matrix : {:(x-2y+3z=-5),(3x+y+z=8),(2x-y+2z=1):}

MODERN PUBLICATION-DETERMINANTS-Exercise 4(h) (LONG ANSWER TYPE QUESTIONS)
  1. Solve the following equations, using inverse of a matrix : {:(2x+y+z...

    Text Solution

    |

  2. Solve the following equations, using inverse of a matrix : {:(2x+3y+...

    Text Solution

    |

  3. Solve the following equations, using inverse of a matrix : {:(3x+4y+...

    Text Solution

    |

  4. Solve the following equations, using inverse of a matrix : {:(8x+4y+...

    Text Solution

    |

  5. Solve the following equations, using inverse of a matrix : {:(x+y+z=...

    Text Solution

    |

  6. Solve the following equations, using inverse of a matrix : {:(5x-y+z...

    Text Solution

    |

  7. Solve the following equations, using inverse of a matrix : {:(3x-2y+...

    Text Solution

    |

  8. Solve the following equations, using inverse of a matrix : {:(3x-y+z...

    Text Solution

    |

  9. Solve the following equations, using inverse of a matrix : {:(4x+3y+...

    Text Solution

    |

  10. 2/x+3/y+10/z=4, 4/x-6/y+5/z=1, 6/x+9/y-20/z=2

    Text Solution

    |

  11. Solve the following system of equations : {:((1)/(x)-(1)/(y)+(2)/(z)...

    Text Solution

    |

  12. Solve the following system of equations : {:((1)/(x)-(1)/(y)+(2)/(z)...

    Text Solution

    |

  13. If A=(2-3 5 3 2-4 1 1-2), find A^(-1) . Using A^(-1) solve the fol...

    Text Solution

    |

  14. If A=((2,-3,5),(3,2,-4),(1,1,-2)) find A^(-1). Use it to solve the sys...

    Text Solution

    |

  15. If A=[[3,2,1],[4,-1,2],[7,3,-3]] then find A^(-1) and hence solve the...

    Text Solution

    |

  16. If A=[{:(3,1,2),(3,2,-3),(2,0,-1):}] , find A^(-1). Hence, solve the s...

    Text Solution

    |

  17. If A=[{:(1,1,1),(1,0,2),(3,1,1):}], find A^(-1). Hence, solve the syst...

    Text Solution

    |

  18. If A=((2,-3,5),(3,2,-4),(1,1,-2)) find A^(-1). Use it to solve the sys...

    Text Solution

    |

  19. Given that A=[{:(1,-1,0),(2,3,4),(0,1,2):}] and B=[{:(2,2,-4),(-4,2,-4...

    Text Solution

    |

  20. Given A=[{:(1 " "-1 " "1),(1 " "-2 " "-2),(2 " "1 " "3)...

    Text Solution

    |