Home
Class 12
MATHS
Solve the following equations, using inv...

Solve the following equations, using inverse of a matrix :
`{:(x+y+z=6),(y+3z=11),(x-2y+z=0):}`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the system of equations using the inverse of a matrix, we can follow these steps: ### Step 1: Write the equations in matrix form We have the following equations: 1. \( x + y + z = 6 \) 2. \( y + 3z = 11 \) 3. \( x - 2y + z = 0 \) We can express these equations in the form \( AX = B \), where: - \( A \) is the coefficient matrix, - \( X \) is the variable matrix, - \( B \) is the constant matrix. The coefficient matrix \( A \) and the constant matrix \( B \) are as follows: \[ A = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 3 \\ 1 & -2 & 1 \end{pmatrix}, \quad X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}, \quad B = \begin{pmatrix} 6 \\ 11 \\ 0 \end{pmatrix} \] ### Step 2: Find the inverse of matrix \( A \) To find the inverse of matrix \( A \), we first need to calculate its determinant. #### Determinant of \( A \): \[ \text{det}(A) = 1 \cdot (1 \cdot 1 - 3 \cdot (-2)) - 1 \cdot (0 \cdot 1 - 3 \cdot 1) + 1 \cdot (0 \cdot (-2) - 1 \cdot 1) \] Calculating this step-by-step: - \( 1 \cdot (1 + 6) = 7 \) - \( -1 \cdot (-3) = 3 \) - \( +1 \cdot (-1) = -1 \) So, \[ \text{det}(A) = 7 + 3 - 1 = 9 \] #### Adjoint of \( A \): Next, we calculate the adjoint of \( A \) by finding the cofactor matrix and then taking its transpose. The cofactor matrix \( C \) is calculated as follows: \[ C = \begin{pmatrix} \text{C}_{11} & \text{C}_{12} & \text{C}_{13} \\ \text{C}_{21} & \text{C}_{22} & \text{C}_{23} \\ \text{C}_{31} & \text{C}_{32} & \text{C}_{33} \end{pmatrix} \] Calculating each cofactor: - \( \text{C}_{11} = 1 \cdot 1 - 3 \cdot (-2) = 7 \) - \( \text{C}_{12} = -(0 \cdot 1 - 3 \cdot 1) = 3 \) - \( \text{C}_{13} = 0 \cdot (-2) - 1 \cdot 1 = -1 \) - \( \text{C}_{21} = -(1 \cdot 1 - 3 \cdot 1) = -(-2) = 2 \) - \( \text{C}_{22} = 1 \cdot 1 - 1 \cdot 1 = 0 \) - \( \text{C}_{23} = -(1 \cdot (-2) - 1 \cdot 1) = 1 \) - \( \text{C}_{31} = 1 \cdot (-2) - 1 \cdot 1 = -3 \) - \( \text{C}_{32} = -(1 \cdot 1 - 1 \cdot 1) = 0 \) - \( \text{C}_{33} = 1 \cdot 1 - 0 \cdot 1 = 1 \) Thus, the cofactor matrix \( C \) is: \[ C = \begin{pmatrix} 7 & 3 & -1 \\ 2 & 0 & 1 \\ -3 & 0 & 1 \end{pmatrix} \] Now, taking the transpose of \( C \) gives us the adjoint \( \text{adj}(A) \): \[ \text{adj}(A) = \begin{pmatrix} 7 & 2 & -3 \\ 3 & 0 & 0 \\ -1 & 1 & 1 \end{pmatrix} \] #### Inverse of \( A \): Now we can find the inverse of \( A \): \[ A^{-1} = \frac{1}{\text{det}(A)} \cdot \text{adj}(A) = \frac{1}{9} \begin{pmatrix} 7 & 2 & -3 \\ 3 & 0 & 0 \\ -1 & 1 & 1 \end{pmatrix} \] ### Step 3: Solve for \( X \) Now we can find \( X \) using the formula \( X = A^{-1}B \): \[ X = \frac{1}{9} \begin{pmatrix} 7 & 2 & -3 \\ 3 & 0 & 0 \\ -1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 6 \\ 11 \\ 0 \end{pmatrix} \] Calculating the product: 1. First row: \( 7 \cdot 6 + 2 \cdot 11 + (-3) \cdot 0 = 42 + 22 + 0 = 64 \) 2. Second row: \( 3 \cdot 6 + 0 \cdot 11 + 0 \cdot 0 = 18 + 0 + 0 = 18 \) 3. Third row: \( -1 \cdot 6 + 1 \cdot 11 + 1 \cdot 0 = -6 + 11 + 0 = 5 \) Thus, \[ X = \frac{1}{9} \begin{pmatrix} 64 \\ 18 \\ 5 \end{pmatrix} = \begin{pmatrix} \frac{64}{9} \\ 2 \\ \frac{5}{9} \end{pmatrix} \] ### Step 4: Final Values The final values of \( x, y, z \) are: - \( x = \frac{64}{9} \) - \( y = 2 \) - \( z = \frac{5}{9} \)
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTIONS (Multiple choice question)|25 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTIONS (Fill in the blanks)|10 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Exercise 4(h) (SHORT ANSWER TYPE QUESTIONS)|10 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos

Similar Questions

Explore conceptually related problems

Solve the following equations, using inverse of a matrix : {:(3x-y+z=5),(2x-2y+3z=7),(x+y-z=-1):}

Solve the following equations, using inverse of a matrix : {:(3x+4y+7z=4),(2x-y+3z=-3),(x+2y-3z=8):}

Solve the following equations, using inverse of a matrix : {:(2x+3y+3z=5),(x-2y+z=4),(3x-y-2z=3):}

Solve the following equations, using inverse of a matrix : {:(3x-2y+3z=8),(2x+y-z=1),(4x-3y+2z=4):}

Solve the following equations, using inverse of a matrix : {:(4x+3y+z=10),(3x-y+2z=8),(x-2y-3z=-10):}

Solve the following equations, using inverse of a matrix : {:(x-2y+3z=-5),(3x+y+z=8),(2x-y+2z=1):}

Solve the following equations, using inverse of a matrix : {:(8x+4y+3z=18),(2x+y+z=5),(x+2y+z=5):}

Solve the following equations, using inverse of a matrix : {:(5x-y+z=4),(3x+2y-5z=2),(x+3y-2z=5):}

Solve the following equations, using inverse of a matrix : {:(x+2y=5),(y+2z=8),(z+2x=5):}

MODERN PUBLICATION-DETERMINANTS-Exercise 4(h) (LONG ANSWER TYPE QUESTIONS)
  1. Solve the following equations, using inverse of a matrix : {:(3x+4y+...

    Text Solution

    |

  2. Solve the following equations, using inverse of a matrix : {:(8x+4y+...

    Text Solution

    |

  3. Solve the following equations, using inverse of a matrix : {:(x+y+z=...

    Text Solution

    |

  4. Solve the following equations, using inverse of a matrix : {:(5x-y+z...

    Text Solution

    |

  5. Solve the following equations, using inverse of a matrix : {:(3x-2y+...

    Text Solution

    |

  6. Solve the following equations, using inverse of a matrix : {:(3x-y+z...

    Text Solution

    |

  7. Solve the following equations, using inverse of a matrix : {:(4x+3y+...

    Text Solution

    |

  8. 2/x+3/y+10/z=4, 4/x-6/y+5/z=1, 6/x+9/y-20/z=2

    Text Solution

    |

  9. Solve the following system of equations : {:((1)/(x)-(1)/(y)+(2)/(z)...

    Text Solution

    |

  10. Solve the following system of equations : {:((1)/(x)-(1)/(y)+(2)/(z)...

    Text Solution

    |

  11. If A=(2-3 5 3 2-4 1 1-2), find A^(-1) . Using A^(-1) solve the fol...

    Text Solution

    |

  12. If A=((2,-3,5),(3,2,-4),(1,1,-2)) find A^(-1). Use it to solve the sys...

    Text Solution

    |

  13. If A=[[3,2,1],[4,-1,2],[7,3,-3]] then find A^(-1) and hence solve the...

    Text Solution

    |

  14. If A=[{:(3,1,2),(3,2,-3),(2,0,-1):}] , find A^(-1). Hence, solve the s...

    Text Solution

    |

  15. If A=[{:(1,1,1),(1,0,2),(3,1,1):}], find A^(-1). Hence, solve the syst...

    Text Solution

    |

  16. If A=((2,-3,5),(3,2,-4),(1,1,-2)) find A^(-1). Use it to solve the sys...

    Text Solution

    |

  17. Given that A=[{:(1,-1,0),(2,3,4),(0,1,2):}] and B=[{:(2,2,-4),(-4,2,-4...

    Text Solution

    |

  18. Given A=[{:(1 " "-1 " "1),(1 " "-2 " "-2),(2 " "1 " "3)...

    Text Solution

    |

  19. Use product [1-1 2 0 2-3 3-2 4]\ \ [-2 0 1 9 2-3 6 1-2] to solve th...

    Text Solution

    |

  20. Solve the following system of homogeneous equations: 2x+3y-z=0 x-y-2z...

    Text Solution

    |