Home
Class 12
MATHS
Solve the following equations, using inv...

Solve the following equations, using inverse of a matrix :
`{:(5x-y+z=4),(3x+2y-5z=2),(x+3y-2z=5):}`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the system of equations using the inverse of a matrix, we will follow these steps: ### Step 1: Write the system of equations in matrix form The given equations are: 1. \(5x - y + z = 4\) 2. \(3x + 2y - 5z = 2\) 3. \(x + 3y - 2z = 5\) We can express these equations in the form of \(AX = B\), where: \[ A = \begin{bmatrix} 5 & -1 & 1 \\ 3 & 2 & -5 \\ 1 & 3 & -2 \end{bmatrix}, \quad X = \begin{bmatrix} x \\ y \\ z \end{bmatrix}, \quad B = \begin{bmatrix} 4 \\ 2 \\ 5 \end{bmatrix} \] ### Step 2: Find the determinant of matrix \(A\) To find the inverse of matrix \(A\), we first need to calculate its determinant (\(|A|\)): \[ |A| = 5 \begin{vmatrix} 2 & -5 \\ 3 & -2 \end{vmatrix} - (-1) \begin{vmatrix} 3 & -5 \\ 1 & -2 \end{vmatrix} + 1 \begin{vmatrix} 3 & 2 \\ 1 & 3 \end{vmatrix} \] Calculating the 2x2 determinants: 1. \(\begin{vmatrix} 2 & -5 \\ 3 & -2 \end{vmatrix} = (2)(-2) - (3)(-5) = -4 + 15 = 11\) 2. \(\begin{vmatrix} 3 & -5 \\ 1 & -2 \end{vmatrix} = (3)(-2) - (1)(-5) = -6 + 5 = -1\) 3. \(\begin{vmatrix} 3 & 2 \\ 1 & 3 \end{vmatrix} = (3)(3) - (1)(2) = 9 - 2 = 7\) Now substituting back into the determinant formula: \[ |A| = 5(11) + 1(-1) + 1(7) = 55 - 1 + 7 = 61 \] ### Step 3: Find the adjoint of matrix \(A\) The adjoint of \(A\) is the transpose of the cofactor matrix. We will calculate the cofactor matrix first. Cofactors: 1. \(C_{11} = \begin{vmatrix} 2 & -5 \\ 3 & -2 \end{vmatrix} = 11\) 2. \(C_{12} = -\begin{vmatrix} 3 & -5 \\ 1 & -2 \end{vmatrix} = 1\) 3. \(C_{13} = \begin{vmatrix} 3 & 2 \\ 1 & 3 \end{vmatrix} = 7\) 4. \(C_{21} = -\begin{vmatrix} -1 & 1 \\ 3 & -2 \end{vmatrix} = -(-1)(-2) - (1)(3) = -2 - 3 = -5\) 5. \(C_{22} = \begin{vmatrix} 5 & 1 \\ 1 & -2 \end{vmatrix} = (5)(-2) - (1)(1) = -10 - 1 = -11\) 6. \(C_{23} = -\begin{vmatrix} 5 & -1 \\ 1 & 3 \end{vmatrix} = -((5)(3) - (-1)(1)) = -15 + 1 = -14\) 7. \(C_{31} = \begin{vmatrix} -1 & 1 \\ 2 & -5 \end{vmatrix} = (-1)(-5) - (1)(2) = 5 - 2 = 3\) 8. \(C_{32} = -\begin{vmatrix} 5 & 1 \\ 3 & -5 \end{vmatrix} = -((5)(-5) - (1)(3)) = -(-25 - 3) = 28\) 9. \(C_{33} = \begin{vmatrix} 5 & -1 \\ 3 & 2 \end{vmatrix} = (5)(2) - (-1)(3) = 10 + 3 = 13\) Thus, the cofactor matrix is: \[ C = \begin{bmatrix} 11 & 1 & 7 \\ -5 & -11 & -14 \\ 3 & 28 & 13 \end{bmatrix} \] The adjoint of \(A\) is the transpose of the cofactor matrix: \[ \text{adj}(A) = \begin{bmatrix} 11 & -5 & 3 \\ 1 & -11 & 28 \\ 7 & -14 & 13 \end{bmatrix} \] ### Step 4: Find the inverse of matrix \(A\) The inverse of matrix \(A\) is given by: \[ A^{-1} = \frac{1}{|A|} \cdot \text{adj}(A) = \frac{1}{61} \begin{bmatrix} 11 & -5 & 3 \\ 1 & -11 & 28 \\ 7 & -14 & 13 \end{bmatrix} \] ### Step 5: Multiply \(A^{-1}\) by \(B\) to find \(X\) Now we will multiply \(A^{-1}\) by \(B\): \[ X = A^{-1}B = \frac{1}{61} \begin{bmatrix} 11 & -5 & 3 \\ 1 & -11 & 28 \\ 7 & -14 & 13 \end{bmatrix} \begin{bmatrix} 4 \\ 2 \\ 5 \end{bmatrix} \] Calculating the product: 1. First row: \(11 \cdot 4 + (-5) \cdot 2 + 3 \cdot 5 = 44 - 10 + 15 = 49\) 2. Second row: \(1 \cdot 4 + (-11) \cdot 2 + 28 \cdot 5 = 4 - 22 + 140 = 122\) 3. Third row: \(7 \cdot 4 + (-14) \cdot 2 + 13 \cdot 5 = 28 - 28 + 65 = 65\) Thus, \[ X = \frac{1}{61} \begin{bmatrix} 49 \\ 122 \\ 65 \end{bmatrix} \] ### Step 6: Final values of \(x\), \(y\), and \(z\) Now we can find \(x\), \(y\), and \(z\): \[ x = \frac{49}{61}, \quad y = \frac{122}{61}, \quad z = \frac{65}{61} \] ### Final Answer The solution to the system of equations is: \[ x = 1, \quad y = 2, \quad z = 1 \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTIONS (Multiple choice question)|25 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTIONS (Fill in the blanks)|10 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Exercise 4(h) (SHORT ANSWER TYPE QUESTIONS)|10 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos

Similar Questions

Explore conceptually related problems

Solve the following equations using inverse of a matrix. {:(5x+2y=3),(3x+2y=5):}

Solve the following equations, using inverse of a matrix : {:(3x-2y+3z=8),(2x+y-z=1),(4x-3y+2z=4):}

Solve the following equations, using inverse of a matrix : {:(2x+3y+3z=5),(x-2y+z=4),(3x-y-2z=3):}

Solve the following equations, using inverse of a matrix : {:(x-2y+3z=-5),(3x+y+z=8),(2x-y+2z=1):}

Solve the following equations, using inverse of a matrix : {:(3x-y+z=5),(2x-2y+3z=7),(x+y-z=-1):}

Solve the following equations using inverse of a matrix. {:(2x+5y=1),(3x+2y=7):}

Solve the following equations, using inverse of a matrix : {:(x+2y-3z=-4),(2x+3y+2z=2),(3x-3y-4z=11):}

Solve the following equations, using inverse of a matrix : {:(3x+4y+7z=4),(2x-y+3z=-3),(x+2y-3z=8):}

Solve the following equations using inverse of a matrix. {:(2x+3y=4),(4x+5y=6):}

Solve the following equations, using inverse of a matrix : {:(8x+4y+3z=18),(2x+y+z=5),(x+2y+z=5):}

MODERN PUBLICATION-DETERMINANTS-Exercise 4(h) (LONG ANSWER TYPE QUESTIONS)
  1. Solve the following equations, using inverse of a matrix : {:(8x+4y+...

    Text Solution

    |

  2. Solve the following equations, using inverse of a matrix : {:(x+y+z=...

    Text Solution

    |

  3. Solve the following equations, using inverse of a matrix : {:(5x-y+z...

    Text Solution

    |

  4. Solve the following equations, using inverse of a matrix : {:(3x-2y+...

    Text Solution

    |

  5. Solve the following equations, using inverse of a matrix : {:(3x-y+z...

    Text Solution

    |

  6. Solve the following equations, using inverse of a matrix : {:(4x+3y+...

    Text Solution

    |

  7. 2/x+3/y+10/z=4, 4/x-6/y+5/z=1, 6/x+9/y-20/z=2

    Text Solution

    |

  8. Solve the following system of equations : {:((1)/(x)-(1)/(y)+(2)/(z)...

    Text Solution

    |

  9. Solve the following system of equations : {:((1)/(x)-(1)/(y)+(2)/(z)...

    Text Solution

    |

  10. If A=(2-3 5 3 2-4 1 1-2), find A^(-1) . Using A^(-1) solve the fol...

    Text Solution

    |

  11. If A=((2,-3,5),(3,2,-4),(1,1,-2)) find A^(-1). Use it to solve the sys...

    Text Solution

    |

  12. If A=[[3,2,1],[4,-1,2],[7,3,-3]] then find A^(-1) and hence solve the...

    Text Solution

    |

  13. If A=[{:(3,1,2),(3,2,-3),(2,0,-1):}] , find A^(-1). Hence, solve the s...

    Text Solution

    |

  14. If A=[{:(1,1,1),(1,0,2),(3,1,1):}], find A^(-1). Hence, solve the syst...

    Text Solution

    |

  15. If A=((2,-3,5),(3,2,-4),(1,1,-2)) find A^(-1). Use it to solve the sys...

    Text Solution

    |

  16. Given that A=[{:(1,-1,0),(2,3,4),(0,1,2):}] and B=[{:(2,2,-4),(-4,2,-4...

    Text Solution

    |

  17. Given A=[{:(1 " "-1 " "1),(1 " "-2 " "-2),(2 " "1 " "3)...

    Text Solution

    |

  18. Use product [1-1 2 0 2-3 3-2 4]\ \ [-2 0 1 9 2-3 6 1-2] to solve th...

    Text Solution

    |

  19. Solve the following system of homogeneous equations: 2x+3y-z=0 x-y-2z...

    Text Solution

    |

  20. Solve the following system of homogeneous linear equations by matri...

    Text Solution

    |