Home
Class 12
MATHS
Solve the following equations, using inv...

Solve the following equations, using inverse of a matrix :
`{:(3x-y+z=5),(2x-2y+3z=7),(x+y-z=-1):}`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given system of equations using the inverse of a matrix, we follow these steps: ### Step 1: Write the equations in matrix form The given equations are: 1. \(3x - y + z = 5\) 2. \(2x - 2y + 3z = 7\) 3. \(x + y - z = -1\) We can express this in matrix form as: \[ A \cdot \begin{pmatrix} x \\ y \\ z \end{pmatrix} = B \] where \[ A = \begin{pmatrix} 3 & -1 & 1 \\ 2 & -2 & 3 \\ 1 & 1 & -1 \end{pmatrix}, \quad B = \begin{pmatrix} 5 \\ 7 \\ -1 \end{pmatrix} \] ### Step 2: Find the determinant of matrix \(A\) To find the inverse of matrix \(A\), we first need to calculate its determinant: \[ \text{det}(A) = 3 \begin{vmatrix} -2 & 3 \\ 1 & -1 \end{vmatrix} - (-1) \begin{vmatrix} 2 & 3 \\ 1 & -1 \end{vmatrix} + 1 \begin{vmatrix} 2 & -2 \\ 1 & 1 \end{vmatrix} \] Calculating the 2x2 determinants: 1. \(\begin{vmatrix} -2 & 3 \\ 1 & -1 \end{vmatrix} = (-2)(-1) - (3)(1) = 2 - 3 = -1\) 2. \(\begin{vmatrix} 2 & 3 \\ 1 & -1 \end{vmatrix} = (2)(-1) - (3)(1) = -2 - 3 = -5\) 3. \(\begin{vmatrix} 2 & -2 \\ 1 & 1 \end{vmatrix} = (2)(1) - (-2)(1) = 2 + 2 = 4\) Now substituting back into the determinant formula: \[ \text{det}(A) = 3(-1) + 1(-5) + 1(4) = -3 - 5 + 4 = -4 \] ### Step 3: Find the adjoint of matrix \(A\) The adjoint of \(A\) is the transpose of the cofactor matrix. We calculate the cofactors for each element of \(A\): 1. \(C_{11} = \begin{vmatrix} -2 & 3 \\ 1 & -1 \end{vmatrix} = -1\) 2. \(C_{12} = -\begin{vmatrix} 2 & 3 \\ 1 & -1 \end{vmatrix} = 5\) 3. \(C_{13} = \begin{vmatrix} 2 & -2 \\ 1 & 1 \end{vmatrix} = 4\) 4. \(C_{21} = -\begin{vmatrix} -1 & 1 \\ 1 & -1 \end{vmatrix} = 0\) 5. \(C_{22} = \begin{vmatrix} 3 & 1 \\ 1 & -1 \end{vmatrix} = -4\) 6. \(C_{23} = -\begin{vmatrix} 3 & -1 \\ 1 & 1 \end{vmatrix} = -2\) 7. \(C_{31} = \begin{vmatrix} -1 & 1 \\ -2 & 3 \end{vmatrix} = 1\) 8. \(C_{32} = -\begin{vmatrix} 3 & 1 \\ 2 & 3 \end{vmatrix} = -7\) 9. \(C_{33} = \begin{vmatrix} 3 & -1 \\ 2 & -2 \end{vmatrix} = -4\) Thus, the cofactor matrix \(C\) is: \[ C = \begin{pmatrix} -1 & 5 & 4 \\ 0 & -4 & -2 \\ 1 & -7 & -4 \end{pmatrix} \] Now, taking the transpose to find the adjoint: \[ \text{adj}(A) = C^T = \begin{pmatrix} -1 & 0 & 1 \\ 5 & -4 & -7 \\ 4 & -2 & -4 \end{pmatrix} \] ### Step 4: Calculate the inverse of matrix \(A\) The inverse of \(A\) is given by: \[ A^{-1} = \frac{1}{\text{det}(A)} \cdot \text{adj}(A) = -\frac{1}{4} \begin{pmatrix} -1 & 0 & 1 \\ 5 & -4 & -7 \\ 4 & -2 & -4 \end{pmatrix} \] Thus, \[ A^{-1} = \begin{pmatrix} \frac{1}{4} & 0 & -\frac{1}{4} \\ -\frac{5}{4} & 1 & \frac{7}{4} \\ -1 & \frac{1}{2} & 1 \end{pmatrix} \] ### Step 5: Solve for \(X\) Now we can find \(X\) using: \[ X = A^{-1}B \] where \(B = \begin{pmatrix} 5 \\ 7 \\ -1 \end{pmatrix}\). Calculating \(X\): \[ X = \begin{pmatrix} \frac{1}{4} & 0 & -\frac{1}{4} \\ -\frac{5}{4} & 1 & \frac{7}{4} \\ -1 & \frac{1}{2} & 1 \end{pmatrix} \begin{pmatrix} 5 \\ 7 \\ -1 \end{pmatrix} \] Calculating the first row: \[ x = \frac{1}{4}(5) + 0(7) - \frac{1}{4}(-1) = \frac{5}{4} + \frac{1}{4} = \frac{6}{4} = \frac{3}{2} \] Calculating the second row: \[ y = -\frac{5}{4}(5) + 1(7) + \frac{7}{4}(-1) = -\frac{25}{4} + 7 - \frac{7}{4} = -\frac{25}{4} + \frac{28}{4} - \frac{7}{4} = -\frac{4}{4} = -1 \] Calculating the third row: \[ z = -1(5) + \frac{1}{2}(7) + 1(-1) = -5 + \frac{7}{2} - 1 = -5 - 1 + \frac{7}{2} = -6 + \frac{7}{2} = -\frac{12}{2} + \frac{7}{2} = -\frac{5}{2} \] Thus, the solution is: \[ X = \begin{pmatrix} \frac{3}{2} \\ -1 \\ -\frac{5}{2} \end{pmatrix} \] ### Final Answer: The solution to the system of equations is: \[ x = \frac{3}{2}, \quad y = -1, \quad z = -\frac{5}{2} \] ---
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTIONS (Multiple choice question)|25 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTIONS (Fill in the blanks)|10 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Exercise 4(h) (SHORT ANSWER TYPE QUESTIONS)|10 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos

Similar Questions

Explore conceptually related problems

Solve the following equations, using inverse of a matrix : {:(3x+4y+7z=4),(2x-y+3z=-3),(x+2y-3z=8):}

Solve the following equations, using inverse of a matrix : {:(2x+3y+3z=5),(x-2y+z=4),(3x-y-2z=3):}

Solve the following equations, using inverse of a matrix : {:(x-2y+3z=-5),(3x+y+z=8),(2x-y+2z=1):}

Solve the following equations, using inverse of a matrix : {:(5x-y+z=4),(3x+2y-5z=2),(x+3y-2z=5):}

Solve the following equations, using inverse of a matrix : {:(3x-2y+3z=8),(2x+y-z=1),(4x-3y+2z=4):}

Solve the following equations, using inverse of a matrix : {:(4x+3y+z=10),(3x-y+2z=8),(x-2y-3z=-10):}

Solve the following equations, using inverse of a matrix : {:(x+y+z=6),(y+3z=11),(x-2y+z=0):}

Solve the following equations, using inverse of a matrix : {:(8x+4y+3z=18),(2x+y+z=5),(x+2y+z=5):}

Solve the following equations, using inverse of a matrix : {:(x+2y=5),(y+2z=8),(z+2x=5):}

Solve the following equations using inverse of a matrix. {:(2x+5y=1),(3x+2y=7):}

MODERN PUBLICATION-DETERMINANTS-Exercise 4(h) (LONG ANSWER TYPE QUESTIONS)
  1. Solve the following equations, using inverse of a matrix : {:(5x-y+z...

    Text Solution

    |

  2. Solve the following equations, using inverse of a matrix : {:(3x-2y+...

    Text Solution

    |

  3. Solve the following equations, using inverse of a matrix : {:(3x-y+z...

    Text Solution

    |

  4. Solve the following equations, using inverse of a matrix : {:(4x+3y+...

    Text Solution

    |

  5. 2/x+3/y+10/z=4, 4/x-6/y+5/z=1, 6/x+9/y-20/z=2

    Text Solution

    |

  6. Solve the following system of equations : {:((1)/(x)-(1)/(y)+(2)/(z)...

    Text Solution

    |

  7. Solve the following system of equations : {:((1)/(x)-(1)/(y)+(2)/(z)...

    Text Solution

    |

  8. If A=(2-3 5 3 2-4 1 1-2), find A^(-1) . Using A^(-1) solve the fol...

    Text Solution

    |

  9. If A=((2,-3,5),(3,2,-4),(1,1,-2)) find A^(-1). Use it to solve the sys...

    Text Solution

    |

  10. If A=[[3,2,1],[4,-1,2],[7,3,-3]] then find A^(-1) and hence solve the...

    Text Solution

    |

  11. If A=[{:(3,1,2),(3,2,-3),(2,0,-1):}] , find A^(-1). Hence, solve the s...

    Text Solution

    |

  12. If A=[{:(1,1,1),(1,0,2),(3,1,1):}], find A^(-1). Hence, solve the syst...

    Text Solution

    |

  13. If A=((2,-3,5),(3,2,-4),(1,1,-2)) find A^(-1). Use it to solve the sys...

    Text Solution

    |

  14. Given that A=[{:(1,-1,0),(2,3,4),(0,1,2):}] and B=[{:(2,2,-4),(-4,2,-4...

    Text Solution

    |

  15. Given A=[{:(1 " "-1 " "1),(1 " "-2 " "-2),(2 " "1 " "3)...

    Text Solution

    |

  16. Use product [1-1 2 0 2-3 3-2 4]\ \ [-2 0 1 9 2-3 6 1-2] to solve th...

    Text Solution

    |

  17. Solve the following system of homogeneous equations: 2x+3y-z=0 x-y-2z...

    Text Solution

    |

  18. Solve the following system of homogeneous linear equations by matri...

    Text Solution

    |

  19. Solve following system of homogeneous linear equations: x+y-2z=0,\ ...

    Text Solution

    |

  20. Solve the following system of homogeneous equations: x+y+z=0 x-2y+z=0...

    Text Solution

    |