Home
Class 12
MATHS
Solve the following system of equations ...

Solve the following system of equations :
`{:((1)/(x)-(1)/(y)+(2)/(z)=7),((3)/(x)+(4)/(y)-(5)/(z)=-5),((2)/(x)-(1)/(y)+(3)/(z)=12):}`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the system of equations given by: 1. \(\frac{1}{x} - \frac{1}{y} + \frac{2}{z} = 7\) 2. \(\frac{3}{x} + \frac{4}{y} - \frac{5}{z} = -5\) 3. \(\frac{2}{x} - \frac{1}{y} + \frac{3}{z} = 12\) we will use the matrix method. Let's denote: - \(u = \frac{1}{x}\) - \(v = \frac{1}{y}\) - \(p = \frac{1}{z}\) Thus, we can rewrite the equations as: 1. \(u - v + 2p = 7\) 2. \(3u + 4v - 5p = -5\) 3. \(2u - v + 3p = 12\) ### Step 1: Form the matrix equation \(AX = B\) The matrix \(A\), the vector \(X\), and the vector \(B\) can be defined as follows: \[ A = \begin{bmatrix} 1 & -1 & 2 \\ 3 & 4 & -5 \\ 2 & -1 & 3 \end{bmatrix}, \quad X = \begin{bmatrix} u \\ v \\ p \end{bmatrix}, \quad B = \begin{bmatrix} 7 \\ -5 \\ 12 \end{bmatrix} \] ### Step 2: Find the inverse of matrix \(A\) To find \(X\), we need to calculate \(X = A^{-1}B\). First, we need to find the determinant of \(A\). \[ \text{det}(A) = 1 \cdot (4 \cdot 3 - (-5)(-1)) - (-1)(3 \cdot 3 - (-5)(2)) + 2(3 \cdot (-1) - 4 \cdot 2) \] Calculating each term: 1. \(1 \cdot (12 - 5) = 7\) 2. \(-(-1)(9 - 10) = 1\) 3. \(2(-3 - 8) = 2 \cdot (-11) = -22\) So, \[ \text{det}(A) = 7 + 1 - 22 = -14 \] ### Step 3: Calculate the adjoint of \(A\) Next, we need to find the cofactor matrix and then the adjoint (transpose of the cofactor matrix). Calculating the cofactors: \[ \text{Cofactor}(A) = \begin{bmatrix} \text{det}\begin{bmatrix} 4 & -5 \\ -1 & 3 \end{bmatrix} & -\text{det}\begin{bmatrix} 3 & -5 \\ 2 & 3 \end{bmatrix} & \text{det}\begin{bmatrix} 3 & 4 \\ 2 & -1 \end{bmatrix} \\ -\text{det}\begin{bmatrix} -1 & 2 \\ -1 & 3 \end{bmatrix} & \text{det}\begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix} & -\text{det}\begin{bmatrix} 1 & -1 \\ 2 & -1 \end{bmatrix} \\ \text{det}\begin{bmatrix} -1 & 2 \\ 4 & -5 \end{bmatrix} & -\text{det}\begin{bmatrix} 1 & 2 \\ 3 & -5 \end{bmatrix} & \text{det}\begin{bmatrix} 1 & -1 \\ 3 & 4 \end{bmatrix} \end{bmatrix} \] Calculating each determinant: 1. \(4 \cdot 3 - (-5)(-1) = 12 - 5 = 7\) 2. \(3 \cdot 3 - (-5)(2) = 9 + 10 = 19\) 3. \(3 \cdot (-1) - 4 \cdot 2 = -3 - 8 = -11\) 4. \(-(-1)(3) - 2(-1) = 3 + 2 = 5\) 5. \(1 \cdot 3 - 2 \cdot 2 = 3 - 4 = -1\) 6. \(1 \cdot (-1) - (-1)(2) = -1 + 2 = 1\) 7. \(-1 \cdot (-5) - 2 \cdot 4 = 5 - 8 = -3\) 8. \(1 \cdot (-5) - 2 \cdot 3 = -5 - 6 = -11\) 9. \(1 \cdot 4 - (-1)(-1) = 4 - 1 = 3\) Thus, the cofactor matrix is: \[ \text{Cofactor}(A) = \begin{bmatrix} 7 & -19 & -11 \\ 5 & -1 & 1 \\ -3 & 11 & 3 \end{bmatrix} \] Taking the transpose gives us the adjoint: \[ \text{adj}(A) = \begin{bmatrix} 7 & 5 & -3 \\ -19 & -1 & 11 \\ -11 & 1 & 3 \end{bmatrix} \] ### Step 4: Calculate \(A^{-1}\) Now, we can find \(A^{-1}\): \[ A^{-1} = \frac{1}{\text{det}(A)} \cdot \text{adj}(A) = \frac{1}{-14} \begin{bmatrix} 7 & 5 & -3 \\ -19 & -1 & 11 \\ -11 & 1 & 3 \end{bmatrix} \] ### Step 5: Multiply \(A^{-1}\) by \(B\) Now we will compute \(X = A^{-1}B\): \[ X = \frac{1}{-14} \begin{bmatrix} 7 & 5 & -3 \\ -19 & -1 & 11 \\ -11 & 1 & 3 \end{bmatrix} \begin{bmatrix} 7 \\ -5 \\ 12 \end{bmatrix} \] Calculating the multiplication: 1. First row: \(7 \cdot 7 + 5 \cdot (-5) + (-3) \cdot 12 = 49 - 25 - 36 = -12\) 2. Second row: \(-19 \cdot 7 + (-1) \cdot (-5) + 11 \cdot 12 = -133 + 5 + 132 = 4\) 3. Third row: \(-11 \cdot 7 + 1 \cdot (-5) + 3 \cdot 12 = -77 - 5 + 36 = -46\) Thus, \[ X = \frac{1}{-14} \begin{bmatrix} -12 \\ 4 \\ -46 \end{bmatrix} = \begin{bmatrix} \frac{12}{14} \\ \frac{-4}{14} \\ \frac{46}{14} \end{bmatrix} = \begin{bmatrix} \frac{6}{7} \\ -\frac{2}{7} \\ \frac{23}{7} \end{bmatrix} \] ### Step 6: Solve for \(x\), \(y\), and \(z\) Recalling that: - \(u = \frac{1}{x}\) - \(v = \frac{1}{y}\) - \(p = \frac{1}{z}\) We have: 1. \(u = \frac{6}{7} \Rightarrow x = \frac{1}{u} = \frac{7}{6}\) 2. \(v = -\frac{2}{7} \Rightarrow y = \frac{1}{v} = -\frac{7}{2}\) (not valid as \(y\) cannot be negative) 3. \(p = \frac{23}{7} \Rightarrow z = \frac{1}{p} = \frac{7}{23}\) ### Final Result The valid solutions for \(x\) and \(z\) are: \[ x = \frac{7}{6}, \quad y = -\frac{7}{2} \text{ (not valid)}, \quad z = \frac{7}{23} \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTIONS (Multiple choice question)|25 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTIONS (Fill in the blanks)|10 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Exercise 4(h) (SHORT ANSWER TYPE QUESTIONS)|10 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos

Similar Questions

Explore conceptually related problems

Solve the following system of equations by matrix method :(2)/(x)-(3)/(y)+(3)/(z)=10(1)/(x)+(1)/(y)+(1)/(z)=10(3)/(x)-(1)/(y)+(2)/(z)=13

Solve the system of equations (2)/(x)+(3)/(y)+(10)/(z)=4(4)/(x)-(6)/(y)+(5)/(z)=1(6)/(x)+(9)/(y)-(20)/(z)=2

Using Cramer's rule solve (1)/(x)+(1)/(y)+(1)/(z)=1,(2)/(x)+(5)/(y)+(3)/(z)=0,(1)/(x)+(2)/(y)+(4)/(z)=3

Solve the following system of equations: 2x-3y+5z=11, 5x+2y-7z=-12, -4x+3y+z=5

Using matrices,solve the following system of equations: 3x-y+z=5 ,2x-2y+3z=7,x+y-z=-1

Using matrices,solve the following system of equations: x+2y+z=7,x+3z=11,2x-3y=1

Solve the following system of equations by matrix method: x+y-z=3,2x+3y+z=10,3x-y-7z=1

Use matrix to solve the following system of equations. x+y+z=6 x-y+z=2 2x+y-z=1

Using Cramer's Rule , solve the following system of equations : {:(3x-4y+5z=-6),(x+y-2z=-1),(2x+3y+z=5):}

Using matrices,solve the following system of equations: x-y+z=4;2x+y-3z=0;x+y+z=2

MODERN PUBLICATION-DETERMINANTS-Exercise 4(h) (LONG ANSWER TYPE QUESTIONS)
  1. Solve the following equations, using inverse of a matrix : {:(4x+3y+...

    Text Solution

    |

  2. 2/x+3/y+10/z=4, 4/x-6/y+5/z=1, 6/x+9/y-20/z=2

    Text Solution

    |

  3. Solve the following system of equations : {:((1)/(x)-(1)/(y)+(2)/(z)...

    Text Solution

    |

  4. Solve the following system of equations : {:((1)/(x)-(1)/(y)+(2)/(z)...

    Text Solution

    |

  5. If A=(2-3 5 3 2-4 1 1-2), find A^(-1) . Using A^(-1) solve the fol...

    Text Solution

    |

  6. If A=((2,-3,5),(3,2,-4),(1,1,-2)) find A^(-1). Use it to solve the sys...

    Text Solution

    |

  7. If A=[[3,2,1],[4,-1,2],[7,3,-3]] then find A^(-1) and hence solve the...

    Text Solution

    |

  8. If A=[{:(3,1,2),(3,2,-3),(2,0,-1):}] , find A^(-1). Hence, solve the s...

    Text Solution

    |

  9. If A=[{:(1,1,1),(1,0,2),(3,1,1):}], find A^(-1). Hence, solve the syst...

    Text Solution

    |

  10. If A=((2,-3,5),(3,2,-4),(1,1,-2)) find A^(-1). Use it to solve the sys...

    Text Solution

    |

  11. Given that A=[{:(1,-1,0),(2,3,4),(0,1,2):}] and B=[{:(2,2,-4),(-4,2,-4...

    Text Solution

    |

  12. Given A=[{:(1 " "-1 " "1),(1 " "-2 " "-2),(2 " "1 " "3)...

    Text Solution

    |

  13. Use product [1-1 2 0 2-3 3-2 4]\ \ [-2 0 1 9 2-3 6 1-2] to solve th...

    Text Solution

    |

  14. Solve the following system of homogeneous equations: 2x+3y-z=0 x-y-2z...

    Text Solution

    |

  15. Solve the following system of homogeneous linear equations by matri...

    Text Solution

    |

  16. Solve following system of homogeneous linear equations: x+y-2z=0,\ ...

    Text Solution

    |

  17. Solve the following system of homogeneous equations: x+y+z=0 x-2y+z=0...

    Text Solution

    |

  18. A school wants to award its students for the value of honesty, regular...

    Text Solution

    |

  19. Two schools A and B want to awad their selected students on the values...

    Text Solution

    |

  20. Two schools P and Q want to award their selected students on the value...

    Text Solution

    |