Home
Class 12
MATHS
Solve the following system of equations ...

Solve the following system of equations :
`{:((1)/(x)-(1)/(y)+(2)/(z)=4,,),((2)/(x)+(1)/(y)-(3)/(z)=0,,),((1)/(x)+(1)/(y)+(1)/(z)=2,x,y,z ne o):}`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given system of equations: \[ \begin{align*} \frac{1}{x} - \frac{1}{y} + \frac{2}{z} &= 4 \quad (1) \\ \frac{2}{x} + \frac{1}{y} - \frac{3}{z} &= 0 \quad (2) \\ \frac{1}{x} + \frac{1}{y} + \frac{1}{z} &= 2 \quad (3) \end{align*} \] we will use the substitution method and matrix method. Let's denote: \[ u = \frac{1}{x}, \quad v = \frac{1}{y}, \quad p = \frac{1}{z} \] This transforms our equations into: \[ \begin{align*} u - v + 2p &= 4 \quad (1') \\ 2u + v - 3p &= 0 \quad (2') \\ u + v + p &= 2 \quad (3') \end{align*} \] ### Step 1: Write the system in matrix form We can express the system of equations in matrix form \(Ax = B\), where: \[ A = \begin{pmatrix} 1 & -1 & 2 \\ 2 & 1 & -3 \\ 1 & 1 & 1 \end{pmatrix}, \quad x = \begin{pmatrix} u \\ v \\ p \end{pmatrix}, \quad B = \begin{pmatrix} 4 \\ 0 \\ 2 \end{pmatrix} \] ### Step 2: Find the determinant of matrix A To find the determinant of \(A\): \[ \text{det}(A) = 1 \cdot \begin{vmatrix} 1 & -3 \\ 1 & 1 \end{vmatrix} - (-1) \cdot \begin{vmatrix} 2 & -3 \\ 1 & 1 \end{vmatrix} + 2 \cdot \begin{vmatrix} 2 & 1 \\ 1 & 1 \end{vmatrix} \] Calculating the minors: \[ \begin{vmatrix} 1 & -3 \\ 1 & 1 \end{vmatrix} = (1)(1) - (-3)(1) = 1 + 3 = 4 \] \[ \begin{vmatrix} 2 & -3 \\ 1 & 1 \end{vmatrix} = (2)(1) - (-3)(1) = 2 + 3 = 5 \] \[ \begin{vmatrix} 2 & 1 \\ 1 & 1 \end{vmatrix} = (2)(1) - (1)(1) = 2 - 1 = 1 \] Putting it all together: \[ \text{det}(A) = 1 \cdot 4 + 1 \cdot 5 + 2 \cdot 1 = 4 + 5 + 2 = 11 \] ### Step 3: Find the adjoint of matrix A To find the adjoint, we need the cofactors of each element in \(A\): \[ \text{Cofactor}(A) = \begin{pmatrix} 4 & -5 & 1 \\ 3 & -1 & -2 \\ 1 & 7 & 3 \end{pmatrix} \] Taking the transpose gives us the adjoint: \[ \text{adj}(A) = \begin{pmatrix} 4 & 3 & 1 \\ -5 & -1 & 7 \\ 1 & -2 & 3 \end{pmatrix} \] ### Step 4: Find the inverse of matrix A The inverse of \(A\) is given by: \[ A^{-1} = \frac{1}{\text{det}(A)} \cdot \text{adj}(A) = \frac{1}{11} \begin{pmatrix} 4 & 3 & 1 \\ -5 & -1 & 7 \\ 1 & -2 & 3 \end{pmatrix} \] ### Step 5: Multiply \(A^{-1}\) by \(B\) Now we compute \(x = A^{-1}B\): \[ x = \frac{1}{11} \begin{pmatrix} 4 & 3 & 1 \\ -5 & -1 & 7 \\ 1 & -2 & 3 \end{pmatrix} \begin{pmatrix} 4 \\ 0 \\ 2 \end{pmatrix} \] Calculating the product: \[ = \frac{1}{11} \begin{pmatrix} (4 \cdot 4) + (3 \cdot 0) + (1 \cdot 2) \\ (-5 \cdot 4) + (-1 \cdot 0) + (7 \cdot 2) \\ (1 \cdot 4) + (-2 \cdot 0) + (3 \cdot 2) \end{pmatrix} \] Calculating each entry: \[ = \frac{1}{11} \begin{pmatrix} 16 + 0 + 2 \\ -20 + 0 + 14 \\ 4 + 0 + 6 \end{pmatrix} = \frac{1}{11} \begin{pmatrix} 18 \\ -6 \\ 10 \end{pmatrix} \] Thus, we have: \[ x = \begin{pmatrix} \frac{18}{11} \\ -\frac{6}{11} \\ \frac{10}{11} \end{pmatrix} \] ### Step 6: Find values of \(x\), \(y\), and \(z\) Since \(u = \frac{1}{x}\), \(v = \frac{1}{y}\), and \(p = \frac{1}{z}\): \[ x = \frac{1}{u} = \frac{11}{18}, \quad y = \frac{1}{v} = -\frac{11}{6}, \quad z = \frac{1}{p} = \frac{11}{10} \] ### Final Answer \[ x = \frac{11}{18}, \quad y = -\frac{11}{6}, \quad z = \frac{11}{10} \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTIONS (Multiple choice question)|25 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTIONS (Fill in the blanks)|10 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Exercise 4(h) (SHORT ANSWER TYPE QUESTIONS)|10 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos

Similar Questions

Explore conceptually related problems

Solve the following system of equations : {:((1)/(x)-(1)/(y)+(2)/(z)=7),((3)/(x)+(4)/(y)-(5)/(z)=-5),((2)/(x)-(1)/(y)+(3)/(z)=12):}

Solve the following system of equations by matrix method :(2)/(x)-(3)/(y)+(3)/(z)=10(1)/(x)+(1)/(y)+(1)/(z)=10(3)/(x)-(1)/(y)+(2)/(z)=13

Using Cramer's rule solve (1)/(x)+(1)/(y)+(1)/(z)=1,(2)/(x)+(5)/(y)+(3)/(z)=0,(1)/(x)+(2)/(y)+(4)/(z)=3

(2-3x)/(x)+(2-3y)/(y)+(2-3z)/(z)=0 then (1)/(x)+(1)/(y)+(1)/(z)=

(1)/((x-y)^(2))+(1)/((y-z)^(2))+(1)/((z-x)^(2))=((1)/(x-y)+(1)/(y-z)+(1)/(z-x))^(2)

Solve the following system of equations: x-y+z=4,quad x-2y-2z=9,quad 2x+y+3z=1

Use matrix to solve the following system of equations. x+y+z=6 x-y+z=2 2x+y-z=1

Solve the following system of equation by matrix method x+y-2z=1;x-y+z=0;2x+3y-4z=2

Using matrices,solve the following system of equations: x+2y+z=7,x+3z=11,2x-3y=1

Using matrices,solve the following system of equations: x-y+z=4;2x+y-3z=0;x+y+z=2

MODERN PUBLICATION-DETERMINANTS-Exercise 4(h) (LONG ANSWER TYPE QUESTIONS)
  1. 2/x+3/y+10/z=4, 4/x-6/y+5/z=1, 6/x+9/y-20/z=2

    Text Solution

    |

  2. Solve the following system of equations : {:((1)/(x)-(1)/(y)+(2)/(z)...

    Text Solution

    |

  3. Solve the following system of equations : {:((1)/(x)-(1)/(y)+(2)/(z)...

    Text Solution

    |

  4. If A=(2-3 5 3 2-4 1 1-2), find A^(-1) . Using A^(-1) solve the fol...

    Text Solution

    |

  5. If A=((2,-3,5),(3,2,-4),(1,1,-2)) find A^(-1). Use it to solve the sys...

    Text Solution

    |

  6. If A=[[3,2,1],[4,-1,2],[7,3,-3]] then find A^(-1) and hence solve the...

    Text Solution

    |

  7. If A=[{:(3,1,2),(3,2,-3),(2,0,-1):}] , find A^(-1). Hence, solve the s...

    Text Solution

    |

  8. If A=[{:(1,1,1),(1,0,2),(3,1,1):}], find A^(-1). Hence, solve the syst...

    Text Solution

    |

  9. If A=((2,-3,5),(3,2,-4),(1,1,-2)) find A^(-1). Use it to solve the sys...

    Text Solution

    |

  10. Given that A=[{:(1,-1,0),(2,3,4),(0,1,2):}] and B=[{:(2,2,-4),(-4,2,-4...

    Text Solution

    |

  11. Given A=[{:(1 " "-1 " "1),(1 " "-2 " "-2),(2 " "1 " "3)...

    Text Solution

    |

  12. Use product [1-1 2 0 2-3 3-2 4]\ \ [-2 0 1 9 2-3 6 1-2] to solve th...

    Text Solution

    |

  13. Solve the following system of homogeneous equations: 2x+3y-z=0 x-y-2z...

    Text Solution

    |

  14. Solve the following system of homogeneous linear equations by matri...

    Text Solution

    |

  15. Solve following system of homogeneous linear equations: x+y-2z=0,\ ...

    Text Solution

    |

  16. Solve the following system of homogeneous equations: x+y+z=0 x-2y+z=0...

    Text Solution

    |

  17. A school wants to award its students for the value of honesty, regular...

    Text Solution

    |

  18. Two schools A and B want to awad their selected students on the values...

    Text Solution

    |

  19. Two schools P and Q want to award their selected students on the value...

    Text Solution

    |

  20. The sum of three numbers is 6. If we multiply third number by 3 and...

    Text Solution

    |