Home
Class 12
MATHS
If A=[{:(3,1,2),(3,2,-3),(2,0,-1):}] , f...

If `A=[{:(3,1,2),(3,2,-3),(2,0,-1):}]` , find `A^(-1)`. Hence, solve the system of equations :
`3x+3y+2z=1`, `x+2y=4`, 2x-3y-z=5`

Text Solution

AI Generated Solution

The correct Answer is:
To find the inverse of the matrix \( A \) and solve the system of equations, we will follow these steps: ### Step 1: Define the matrix \( A \) Given: \[ A = \begin{pmatrix} 3 & 1 & 2 \\ 3 & 2 & -3 \\ 2 & 0 & -1 \end{pmatrix} \] ### Step 2: Calculate the determinant of \( A \) The determinant of a \( 3 \times 3 \) matrix is calculated using the formula: \[ \text{det}(A) = a(ei - fh) - b(di - fg) + c(dh - eg) \] For our matrix \( A \): \[ \text{det}(A) = 3 \cdot ((2 \cdot -1) - (-3 \cdot 0)) - 1 \cdot ((3 \cdot -1) - (-3 \cdot 2)) + 2 \cdot ((3 \cdot 0) - (2 \cdot 2)) \] Calculating each term: \[ = 3 \cdot (-2) - 1 \cdot (-3 + 6) + 2 \cdot (0 - 4) \] \[ = -6 - 3 - 8 \] \[ = -17 \] ### Step 3: Calculate the adjoint of \( A \) The adjoint of a matrix is the transpose of the cofactor matrix. We will find the cofactors for each element of \( A \). 1. **Cofactor \( C_{11} \)**: \[ C_{11} = (-1)^{1+1} \cdot \text{det} \begin{pmatrix} 2 & -3 \\ 0 & -1 \end{pmatrix} = 1 \cdot (2 \cdot -1 - (-3 \cdot 0)) = -2 \] 2. **Cofactor \( C_{12} \)**: \[ C_{12} = (-1)^{1+2} \cdot \text{det} \begin{pmatrix} 3 & -3 \\ 2 & -1 \end{pmatrix} = -1 \cdot (3 \cdot -1 - (-3 \cdot 2)) = -1 \cdot (-3 + 6) = -3 \] 3. **Cofactor \( C_{13} \)**: \[ C_{13} = (-1)^{1+3} \cdot \text{det} \begin{pmatrix} 3 & 2 \\ 2 & 0 \end{pmatrix} = 1 \cdot (3 \cdot 0 - (2 \cdot 2)) = -4 \] 4. **Cofactor \( C_{21} \)**: \[ C_{21} = (-1)^{2+1} \cdot \text{det} \begin{pmatrix} 1 & 2 \\ 0 & -1 \end{pmatrix} = -1 \cdot (1 \cdot -1 - (2 \cdot 0)) = 1 \] 5. **Cofactor \( C_{22} \)**: \[ C_{22} = (-1)^{2+2} \cdot \text{det} \begin{pmatrix} 3 & 2 \\ 2 & -1 \end{pmatrix} = 1 \cdot (3 \cdot -1 - (2 \cdot 2)) = -7 \] 6. **Cofactor \( C_{23} \)**: \[ C_{23} = (-1)^{2+3} \cdot \text{det} \begin{pmatrix} 3 & 1 \\ 2 & 0 \end{pmatrix} = -1 \cdot (3 \cdot 0 - (1 \cdot 2)) = 2 \] 7. **Cofactor \( C_{31} \)**: \[ C_{31} = (-1)^{3+1} \cdot \text{det} \begin{pmatrix} 1 & 2 \\ 2 & -3 \end{pmatrix} = 1 \cdot (1 \cdot -3 - (2 \cdot 2)) = -7 \] 8. **Cofactor \( C_{32} \)**: \[ C_{32} = (-1)^{3+2} \cdot \text{det} \begin{pmatrix} 3 & 2 \\ 3 & -3 \end{pmatrix} = -1 \cdot (3 \cdot -3 - (2 \cdot 3)) = 3 \] 9. **Cofactor \( C_{33} \)**: \[ C_{33} = (-1)^{3+3} \cdot \text{det} \begin{pmatrix} 3 & 1 \\ 3 & 2 \end{pmatrix} = 1 \cdot (3 \cdot 2 - (1 \cdot 3)) = 3 \] The cofactor matrix is: \[ \text{Cofactor}(A) = \begin{pmatrix} -2 & -3 & -4 \\ 1 & -7 & 2 \\ -7 & 3 & 3 \end{pmatrix} \] Now, we take the transpose to get the adjoint: \[ \text{adj}(A) = \begin{pmatrix} -2 & 1 & -7 \\ -3 & -7 & 3 \\ -4 & 2 & 3 \end{pmatrix} \] ### Step 4: Calculate the inverse of \( A \) Using the formula: \[ A^{-1} = \frac{1}{\text{det}(A)} \cdot \text{adj}(A) \] Substituting the values: \[ A^{-1} = \frac{1}{-17} \cdot \begin{pmatrix} -2 & 1 & -7 \\ -3 & -7 & 3 \\ -4 & 2 & 3 \end{pmatrix} = \begin{pmatrix} \frac{2}{17} & -\frac{1}{17} & \frac{7}{17} \\ \frac{3}{17} & \frac{7}{17} & -\frac{3}{17} \\ \frac{4}{17} & -\frac{2}{17} & -\frac{3}{17} \end{pmatrix} \] ### Step 5: Solve the system of equations We can represent the system of equations in matrix form \( AX = B \): \[ B = \begin{pmatrix} 1 \\ 4 \\ 5 \end{pmatrix} \] Thus, we need to calculate: \[ X = A^{-1}B \] Calculating \( A^{-1}B \): \[ X = \begin{pmatrix} \frac{2}{17} & -\frac{1}{17} & \frac{7}{17} \\ \frac{3}{17} & \frac{7}{17} & -\frac{3}{17} \\ \frac{4}{17} & -\frac{2}{17} & -\frac{3}{17} \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 4 \\ 5 \end{pmatrix} \] Calculating the first element: \[ x = \frac{2}{17} \cdot 1 - \frac{1}{17} \cdot 4 + \frac{7}{17} \cdot 5 = \frac{2 - 4 + 35}{17} = \frac{33}{17} = 2 \] Calculating the second element: \[ y = \frac{3}{17} \cdot 1 + \frac{7}{17} \cdot 4 - \frac{3}{17} \cdot 5 = \frac{3 + 28 - 15}{17} = \frac{16}{17} = 1 \] Calculating the third element: \[ z = \frac{4}{17} \cdot 1 - \frac{2}{17} \cdot 4 - \frac{3}{17} \cdot 5 = \frac{4 - 8 - 15}{17} = \frac{-19}{17} = -4 \] ### Final Solution The solution to the system of equations is: \[ x = 2, \quad y = 1, \quad z = -4 \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTIONS (Multiple choice question)|25 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTIONS (Fill in the blanks)|10 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Exercise 4(h) (SHORT ANSWER TYPE QUESTIONS)|10 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos

Similar Questions

Explore conceptually related problems

If A=[{:(1,1,1),(1,0,2),(3,1,1):}] , find A^(-1) . Hence, solve the system of equations : x+y+z=6 , x+2z=7 , 3x+y+z=12

If A=[[2,3,4],[1,-1,0],[0,1,2]] , find A^(-1) . Hence, solve the system of equations x-y=3, 2x+3y+4z=17, y+2z=7

If A=[[1,3,4],[2,1,2],[5,1,1]] , find A^(-1) . Hence solve the system of equations : x+3y+4z=8, 2x+y+2z=5 and 5x+y+z=7

Solve the system of equations 2x+3y-3z=0 , 3x-3y+z=0 and 3x-2y-3z=0

If A=[(2,1,3),(4,-1,0),(-7,2,1)] , find A^(-1) and hence solve the following system of equations: 2x+y+3z=3 4x-y=3 -7x+2y+z=2

If A=((2,-3,5),(3,2,-4),(1,1,-2)) find A^(-1). Use it to solve the system of equations 2x-3y+5z=11 , 3x+2y-4z=-5 and x+y-2z=-3

If matrix A=[[2,1,-3],[3,2,1],[1,2,-1]] . Find A^(-1) and hence solve the system of equation 2x+y–3z=13, 3x+2y+z=4, x+2y-z=8

If matrix A=|[2,3,1],[1,2,2],[-3,1,-1]| Find A^(-1) and hence solve the system of equation 2x+y-3z=13,3x+2y+z=4,x+2y-z=8

If matrix A=[[2,3,1],[1,2,2],[-3,1,-1]] Find A^(-1) and hence solve the system of equation 2x+y-3z=13,3x+2y+z=4,x+2y-z=8

MODERN PUBLICATION-DETERMINANTS-Exercise 4(h) (LONG ANSWER TYPE QUESTIONS)
  1. Solve the following system of equations : {:((1)/(x)-(1)/(y)+(2)/(z)...

    Text Solution

    |

  2. If A=(2-3 5 3 2-4 1 1-2), find A^(-1) . Using A^(-1) solve the fol...

    Text Solution

    |

  3. If A=((2,-3,5),(3,2,-4),(1,1,-2)) find A^(-1). Use it to solve the sys...

    Text Solution

    |

  4. If A=[[3,2,1],[4,-1,2],[7,3,-3]] then find A^(-1) and hence solve the...

    Text Solution

    |

  5. If A=[{:(3,1,2),(3,2,-3),(2,0,-1):}] , find A^(-1). Hence, solve the s...

    Text Solution

    |

  6. If A=[{:(1,1,1),(1,0,2),(3,1,1):}], find A^(-1). Hence, solve the syst...

    Text Solution

    |

  7. If A=((2,-3,5),(3,2,-4),(1,1,-2)) find A^(-1). Use it to solve the sys...

    Text Solution

    |

  8. Given that A=[{:(1,-1,0),(2,3,4),(0,1,2):}] and B=[{:(2,2,-4),(-4,2,-4...

    Text Solution

    |

  9. Given A=[{:(1 " "-1 " "1),(1 " "-2 " "-2),(2 " "1 " "3)...

    Text Solution

    |

  10. Use product [1-1 2 0 2-3 3-2 4]\ \ [-2 0 1 9 2-3 6 1-2] to solve th...

    Text Solution

    |

  11. Solve the following system of homogeneous equations: 2x+3y-z=0 x-y-2z...

    Text Solution

    |

  12. Solve the following system of homogeneous linear equations by matri...

    Text Solution

    |

  13. Solve following system of homogeneous linear equations: x+y-2z=0,\ ...

    Text Solution

    |

  14. Solve the following system of homogeneous equations: x+y+z=0 x-2y+z=0...

    Text Solution

    |

  15. A school wants to award its students for the value of honesty, regular...

    Text Solution

    |

  16. Two schools A and B want to awad their selected students on the values...

    Text Solution

    |

  17. Two schools P and Q want to award their selected students on the value...

    Text Solution

    |

  18. The sum of three numbers is 6. If we multiply third number by 3 and...

    Text Solution

    |

  19. The sum of three numbers is 6. Twice the third number when added to th...

    Text Solution

    |

  20. The cost of 4 kg onion, 3 kg wheat and 2 kg rice is Rs 60. The cost...

    Text Solution

    |