Home
Class 12
MATHS
If A=[{:(1,1,1),(1,0,2),(3,1,1):}], find...

If `A=[{:(1,1,1),(1,0,2),(3,1,1):}]`, find `A^(-1)`. Hence, solve the system of equations :
`x+y+z=6`, `x+2z=7`, `3x+y+z=12`

Text Solution

AI Generated Solution

The correct Answer is:
To find the inverse of the matrix \( A \) and solve the given system of equations, we will follow these steps: ### Step 1: Write the matrix \( A \) The matrix \( A \) is given as: \[ A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 2 \\ 3 & 1 & 1 \end{pmatrix} \] ### Step 2: Calculate the determinant of \( A \) The determinant of a \( 3 \times 3 \) matrix can be calculated using the formula: \[ \text{det}(A) = a(ei - fh) - b(di - fg) + c(dh - eg) \] For our matrix: \[ \text{det}(A) = 1(0 \cdot 1 - 2 \cdot 1) - 1(1 \cdot 1 - 2 \cdot 3) + 1(1 \cdot 1 - 0 \cdot 3) \] Calculating this step-by-step: \[ = 1(0 - 2) - 1(1 - 6) + 1(1 - 0) \] \[ = -2 + 5 + 1 = 4 \] ### Step 3: Calculate the cofactor matrix of \( A \) The cofactor matrix is obtained by calculating the determinant of the \( 2 \times 2 \) matrices formed by removing one row and one column for each element, and applying the checkerboard pattern of signs. The cofactor matrix \( C \) is: \[ C = \begin{pmatrix} C_{11} & C_{12} & C_{13} \\ C_{21} & C_{22} & C_{23} \\ C_{31} & C_{32} & C_{33} \end{pmatrix} \] Calculating each cofactor: - \( C_{11} = \text{det} \begin{pmatrix} 0 & 2 \\ 1 & 1 \end{pmatrix} = (0 \cdot 1 - 2 \cdot 1) = -2 \) - \( C_{12} = -\text{det} \begin{pmatrix} 1 & 2 \\ 3 & 1 \end{pmatrix} = - (1 \cdot 1 - 2 \cdot 3) = -(-5) = 5 \) - \( C_{13} = \text{det} \begin{pmatrix} 1 & 0 \\ 3 & 1 \end{pmatrix} = (1 \cdot 1 - 0 \cdot 3) = 1 \) - \( C_{21} = -\text{det} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} = - (1 \cdot 1 - 1 \cdot 1) = 0 \) - \( C_{22} = \text{det} \begin{pmatrix} 1 & 1 \\ 3 & 1 \end{pmatrix} = (1 \cdot 1 - 1 \cdot 3) = -2 \) - \( C_{23} = -\text{det} \begin{pmatrix} 1 & 1 \\ 3 & 1 \end{pmatrix} = - (1 \cdot 1 - 1 \cdot 3) = 2 \) - \( C_{31} = \text{det} \begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix} = (1 \cdot 2 - 1 \cdot 0) = 2 \) - \( C_{32} = -\text{det} \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} = - (1 \cdot 2 - 1 \cdot 1) = -1 \) - \( C_{33} = \text{det} \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} = (1 \cdot 0 - 1 \cdot 1) = -1 \) Thus, the cofactor matrix \( C \) is: \[ C = \begin{pmatrix} -2 & 5 & 1 \\ 0 & -2 & 2 \\ 2 & -1 & -1 \end{pmatrix} \] ### Step 4: Calculate the adjoint of \( A \) The adjoint of \( A \) is the transpose of the cofactor matrix \( C \): \[ \text{adj}(A) = C^T = \begin{pmatrix} -2 & 0 & 2 \\ 5 & -2 & -1 \\ 1 & 2 & -1 \end{pmatrix} \] ### Step 5: Calculate the inverse of \( A \) The inverse of \( A \) is given by: \[ A^{-1} = \frac{1}{\text{det}(A)} \cdot \text{adj}(A) \] Substituting the values: \[ A^{-1} = \frac{1}{4} \begin{pmatrix} -2 & 0 & 2 \\ 5 & -2 & -1 \\ 1 & 2 & -1 \end{pmatrix} = \begin{pmatrix} -\frac{1}{2} & 0 & \frac{1}{2} \\ \frac{5}{4} & -\frac{1}{2} & -\frac{1}{4} \\ \frac{1}{4} & \frac{1}{2} & -\frac{1}{4} \end{pmatrix} \] ### Step 6: Solve the system of equations The system of equations can be represented in matrix form as \( Ax = b \), where: \[ b = \begin{pmatrix} 6 \\ 7 \\ 12 \end{pmatrix} \] To find \( x \), we use: \[ x = A^{-1}b \] Calculating: \[ x = \begin{pmatrix} -\frac{1}{2} & 0 & \frac{1}{2} \\ \frac{5}{4} & -\frac{1}{2} & -\frac{1}{4} \\ \frac{1}{4} & \frac{1}{2} & -\frac{1}{4} \end{pmatrix} \begin{pmatrix} 6 \\ 7 \\ 12 \end{pmatrix} \] Calculating each component: 1. First row: \[ -\frac{1}{2} \cdot 6 + 0 \cdot 7 + \frac{1}{2} \cdot 12 = -3 + 0 + 6 = 3 \] 2. Second row: \[ \frac{5}{4} \cdot 6 - \frac{1}{2} \cdot 7 - \frac{1}{4} \cdot 12 = \frac{30}{4} - \frac{14}{4} - \frac{12}{4} = \frac{30 - 14 - 12}{4} = \frac{4}{4} = 1 \] 3. Third row: \[ \frac{1}{4} \cdot 6 + \frac{1}{2} \cdot 7 - \frac{1}{4} \cdot 12 = \frac{6}{4} + \frac{7}{2} - \frac{12}{4} = \frac{6 + 14 - 12}{4} = \frac{8}{4} = 2 \] Thus, we have: \[ x = \begin{pmatrix} 3 \\ 1 \\ 2 \end{pmatrix} \] ### Final Answer The solution to the system of equations is: \[ x = 3, \quad y = 1, \quad z = 2 \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTIONS (Multiple choice question)|25 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTIONS (Fill in the blanks)|10 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Exercise 4(h) (SHORT ANSWER TYPE QUESTIONS)|10 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos

Similar Questions

Explore conceptually related problems

If A=[{:(3,1,2),(3,2,-3),(2,0,-1):}] , find A^(-1) . Hence, solve the system of equations : 3x+3y+2z=1 , x+2y=4 , 2x-3y-z=5

If A=[[2,3,4],[1,-1,0],[0,1,2]] , find A^(-1) . Hence, solve the system of equations x-y=3, 2x+3y+4z=17, y+2z=7

If A=[[1,3,4],[2,1,2],[5,1,1]] , find A^(-1) . Hence solve the system of equations : x+3y+4z=8, 2x+y+2z=5 and 5x+y+z=7

If A=[(2,1,3),(4,-1,0),(-7,2,1)] , find A^(-1) and hence solve the following system of equations: 2x+y+3z=3 4x-y=3 -7x+2y+z=2

If A=[[1,-1,12,1,-31,1,1]], find A^(-1) and hence solve the system of linear equation.x+2y+z=4,-x+y+z=0,x-3y+z=2

If matrix A=[[2,3,1],[1,2,2],[-3,1,-1]] Find A^(-1) and hence solve the system of equation 2x+y-3z=13,3x+2y+z=4,x+2y-z=8

If matrix A=|[2,3,1],[1,2,2],[-3,1,-1]| Find A^(-1) and hence solve the system of equation 2x+y-3z=13,3x+2y+z=4,x+2y-z=8

Solve the system of equations by cramer's rule: x+y+z=1 , x+2y+z=2 , x+y+2z=0

If matrix A=[[2,1,-3],[3,2,1],[1,2,-1]] . Find A^(-1) and hence solve the system of equation 2x+y–3z=13, 3x+2y+z=4, x+2y-z=8

MODERN PUBLICATION-DETERMINANTS-Exercise 4(h) (LONG ANSWER TYPE QUESTIONS)
  1. Solve the following system of equations : {:((1)/(x)-(1)/(y)+(2)/(z)...

    Text Solution

    |

  2. If A=(2-3 5 3 2-4 1 1-2), find A^(-1) . Using A^(-1) solve the fol...

    Text Solution

    |

  3. If A=((2,-3,5),(3,2,-4),(1,1,-2)) find A^(-1). Use it to solve the sys...

    Text Solution

    |

  4. If A=[[3,2,1],[4,-1,2],[7,3,-3]] then find A^(-1) and hence solve the...

    Text Solution

    |

  5. If A=[{:(3,1,2),(3,2,-3),(2,0,-1):}] , find A^(-1). Hence, solve the s...

    Text Solution

    |

  6. If A=[{:(1,1,1),(1,0,2),(3,1,1):}], find A^(-1). Hence, solve the syst...

    Text Solution

    |

  7. If A=((2,-3,5),(3,2,-4),(1,1,-2)) find A^(-1). Use it to solve the sys...

    Text Solution

    |

  8. Given that A=[{:(1,-1,0),(2,3,4),(0,1,2):}] and B=[{:(2,2,-4),(-4,2,-4...

    Text Solution

    |

  9. Given A=[{:(1 " "-1 " "1),(1 " "-2 " "-2),(2 " "1 " "3)...

    Text Solution

    |

  10. Use product [1-1 2 0 2-3 3-2 4]\ \ [-2 0 1 9 2-3 6 1-2] to solve th...

    Text Solution

    |

  11. Solve the following system of homogeneous equations: 2x+3y-z=0 x-y-2z...

    Text Solution

    |

  12. Solve the following system of homogeneous linear equations by matri...

    Text Solution

    |

  13. Solve following system of homogeneous linear equations: x+y-2z=0,\ ...

    Text Solution

    |

  14. Solve the following system of homogeneous equations: x+y+z=0 x-2y+z=0...

    Text Solution

    |

  15. A school wants to award its students for the value of honesty, regular...

    Text Solution

    |

  16. Two schools A and B want to awad their selected students on the values...

    Text Solution

    |

  17. Two schools P and Q want to award their selected students on the value...

    Text Solution

    |

  18. The sum of three numbers is 6. If we multiply third number by 3 and...

    Text Solution

    |

  19. The sum of three numbers is 6. Twice the third number when added to th...

    Text Solution

    |

  20. The cost of 4 kg onion, 3 kg wheat and 2 kg rice is Rs 60. The cost...

    Text Solution

    |