Home
Class 12
MATHS
Given that A=[{:(1,-1,0),(2,3,4),(0,1,2)...

Given that `A=[{:(1,-1,0),(2,3,4),(0,1,2):}]` and `B=[{:(2,2,-4),(-4,2,-4),(2,-1,5):}]`. Find `AB`.
Use this to solve that following system of equations :
`x-y=3`, `2x+3y+4z=17`, `y+2z=7`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we need to follow these procedures: ### Step 1: Define Matrices A and B Given: \[ A = \begin{pmatrix} 1 & -1 & 0 \\ 2 & 3 & 4 \\ 0 & 1 & 2 \end{pmatrix} \] \[ B = \begin{pmatrix} 2 & 2 & -4 \\ -4 & 2 & -4 \\ 2 & -1 & 5 \end{pmatrix} \] ### Step 2: Calculate the Product AB To find \( AB \), we multiply matrix \( A \) by matrix \( B \). The element in the \( i^{th} \) row and \( j^{th} \) column of the product \( AB \) is calculated as follows: \[ (AB)_{ij} = \sum_{k=1}^{n} A_{ik} B_{kj} \] #### Calculation of each element: 1. **First Row, First Column**: \[ (AB)_{11} = 1 \cdot 2 + (-1) \cdot (-4) + 0 \cdot 2 = 2 + 4 + 0 = 6 \] 2. **First Row, Second Column**: \[ (AB)_{12} = 1 \cdot 2 + (-1) \cdot 2 + 0 \cdot (-1) = 2 - 2 + 0 = 0 \] 3. **First Row, Third Column**: \[ (AB)_{13} = 1 \cdot (-4) + (-1) \cdot (-4) + 0 \cdot 5 = -4 + 4 + 0 = 0 \] 4. **Second Row, First Column**: \[ (AB)_{21} = 2 \cdot 2 + 3 \cdot (-4) + 4 \cdot 2 = 4 - 12 + 8 = 0 \] 5. **Second Row, Second Column**: \[ (AB)_{22} = 2 \cdot 2 + 3 \cdot 2 + 4 \cdot (-1) = 4 + 6 - 4 = 6 \] 6. **Second Row, Third Column**: \[ (AB)_{23} = 2 \cdot (-4) + 3 \cdot (-4) + 4 \cdot 5 = -8 - 12 + 20 = 0 \] 7. **Third Row, First Column**: \[ (AB)_{31} = 0 \cdot 2 + 1 \cdot (-4) + 2 \cdot 2 = 0 - 4 + 4 = 0 \] 8. **Third Row, Second Column**: \[ (AB)_{32} = 0 \cdot 2 + 1 \cdot 2 + 2 \cdot (-1) = 0 + 2 - 2 = 0 \] 9. **Third Row, Third Column**: \[ (AB)_{33} = 0 \cdot (-4) + 1 \cdot (-4) + 2 \cdot 5 = 0 - 4 + 10 = 6 \] ### Result of AB: Combining all the calculated elements, we have: \[ AB = \begin{pmatrix} 6 & 0 & 0 \\ 0 & 6 & 0 \\ 0 & 0 & 6 \end{pmatrix} = 6I \] where \( I \) is the identity matrix. ### Step 3: Solve the System of Equations The given system of equations is: 1. \( x - y = 3 \) (Equation 1) 2. \( 2x + 3y + 4z = 17 \) (Equation 2) 3. \( y + 2z = 7 \) (Equation 3) We can express this in matrix form \( AX = B \), where: \[ A = \begin{pmatrix} 1 & -1 & 0 \\ 2 & 3 & 4 \\ 0 & 1 & 2 \end{pmatrix}, \quad X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}, \quad B = \begin{pmatrix} 3 \\ 17 \\ 7 \end{pmatrix} \] ### Step 4: Find the Inverse of Matrix A Since \( AB = 6I \), we can find \( A^{-1} \) as follows: \[ A^{-1} = \frac{1}{\text{det}(A)} \cdot \text{adj}(A) \] Given \( \text{det}(A) = 6 \), we have: \[ A^{-1} = \frac{1}{6} \cdot \text{adj}(A) \] ### Step 5: Calculate \( A^{-1}B \) To find \( X \): \[ X = A^{-1}B \] Substituting \( A^{-1} \): \[ X = \frac{1}{6} \cdot \text{adj}(A) \cdot B \] Calculating \( \text{adj}(A) \) from the previous steps, we have: \[ \text{adj}(A) = \begin{pmatrix} 2 & 2 & -4 \\ -4 & 2 & -4 \\ 2 & -1 & 5 \end{pmatrix} \] Now, calculate \( X \): \[ X = \frac{1}{6} \begin{pmatrix} 2 & 2 & -4 \\ -4 & 2 & -4 \\ 2 & -1 & 5 \end{pmatrix} \begin{pmatrix} 3 \\ 17 \\ 7 \end{pmatrix} \] Calculating each element of \( X \): 1. **First Element**: \[ x = \frac{1}{6} (2 \cdot 3 + 2 \cdot 17 - 4 \cdot 7) = \frac{1}{6} (6 + 34 - 28) = \frac{12}{6} = 2 \] 2. **Second Element**: \[ y = \frac{1}{6} (-4 \cdot 3 + 2 \cdot 17 - 4 \cdot 7) = \frac{1}{6} (-12 + 34 - 28) = \frac{-6}{6} = -1 \] 3. **Third Element**: \[ z = \frac{1}{6} (2 \cdot 3 - 1 \cdot 17 + 5 \cdot 7) = \frac{1}{6} (6 - 17 + 35) = \frac{24}{6} = 4 \] ### Final Solution: Thus, the solution to the system of equations is: \[ x = 2, \quad y = -1, \quad z = 4 \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTIONS (Multiple choice question)|25 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTIONS (Fill in the blanks)|10 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Exercise 4(h) (SHORT ANSWER TYPE QUESTIONS)|10 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos

Similar Questions

Explore conceptually related problems

Use matrix to solve the following system of equations. x+y+z=3 x+2y+3z=4 2x+3y+4z=7

Solve the following system of equations 3x-4y+5z=0,x+y-2z=0,2x+3y+z=0

Evaluate the product AB , where A=[(1,-1,0),(2,3,4),(0,1,2)] and B=[(2,2,-4 ),(-4,2,-4),(2,-1,5 )] hence solve the system of linear equations x-y=3 2x +3y +4z =17 y+2z =7

Using matrices,solve the following system of equations: x-y+z=4;2x+y-3z=0;x+y+z=2

Using matrices,solve the following system of equations: 2x-3y+5z=11,3x+2y-4z=-5,x+y-2z=-3

Given A=[[1,-1, 0], [2, 3, 4], [0, 1, 2]], B= [[2,2,-4],[-4,2,-4],[2,-1,5]] find AB and use this to solve the system of equations: y+2x=7,x-y=3,2x+3y+4z=17

Using matrices, solve the following system of equations for x,y and z. 3x-2y+3z=8 , 2x+y-z=1 , 4x-3y+2z=4

Using matrices,solve the following system of equations: 2x+3y+3z=5;x-2y+z=-4;3x-y-2z=3

If A=[(2,1,3),(4,-1,0),(-7,2,1)] , find A^(-1) and hence solve the following system of equations: 2x+y+3z=3 4x-y=3 -7x+2y+z=2

Using matrices,solve the following system of linear equations: 3x-2y+3z=8;2x+y-z=1;4x-3y+2z=4

MODERN PUBLICATION-DETERMINANTS-Exercise 4(h) (LONG ANSWER TYPE QUESTIONS)
  1. Solve the following system of equations : {:((1)/(x)-(1)/(y)+(2)/(z)...

    Text Solution

    |

  2. If A=(2-3 5 3 2-4 1 1-2), find A^(-1) . Using A^(-1) solve the fol...

    Text Solution

    |

  3. If A=((2,-3,5),(3,2,-4),(1,1,-2)) find A^(-1). Use it to solve the sys...

    Text Solution

    |

  4. If A=[[3,2,1],[4,-1,2],[7,3,-3]] then find A^(-1) and hence solve the...

    Text Solution

    |

  5. If A=[{:(3,1,2),(3,2,-3),(2,0,-1):}] , find A^(-1). Hence, solve the s...

    Text Solution

    |

  6. If A=[{:(1,1,1),(1,0,2),(3,1,1):}], find A^(-1). Hence, solve the syst...

    Text Solution

    |

  7. If A=((2,-3,5),(3,2,-4),(1,1,-2)) find A^(-1). Use it to solve the sys...

    Text Solution

    |

  8. Given that A=[{:(1,-1,0),(2,3,4),(0,1,2):}] and B=[{:(2,2,-4),(-4,2,-4...

    Text Solution

    |

  9. Given A=[{:(1 " "-1 " "1),(1 " "-2 " "-2),(2 " "1 " "3)...

    Text Solution

    |

  10. Use product [1-1 2 0 2-3 3-2 4]\ \ [-2 0 1 9 2-3 6 1-2] to solve th...

    Text Solution

    |

  11. Solve the following system of homogeneous equations: 2x+3y-z=0 x-y-2z...

    Text Solution

    |

  12. Solve the following system of homogeneous linear equations by matri...

    Text Solution

    |

  13. Solve following system of homogeneous linear equations: x+y-2z=0,\ ...

    Text Solution

    |

  14. Solve the following system of homogeneous equations: x+y+z=0 x-2y+z=0...

    Text Solution

    |

  15. A school wants to award its students for the value of honesty, regular...

    Text Solution

    |

  16. Two schools A and B want to awad their selected students on the values...

    Text Solution

    |

  17. Two schools P and Q want to award their selected students on the value...

    Text Solution

    |

  18. The sum of three numbers is 6. If we multiply third number by 3 and...

    Text Solution

    |

  19. The sum of three numbers is 6. Twice the third number when added to th...

    Text Solution

    |

  20. The cost of 4 kg onion, 3 kg wheat and 2 kg rice is Rs 60. The cost...

    Text Solution

    |