Home
Class 12
MATHS
If A=[{:(a(11),a(12),a(13)),(a(21),a(22)...

If `A=[{:(a_(11),a_(12),a_(13)),(a_(21),a_(22),a_(23)),(a_(31),a_(32),a_(33)):}]` and `A_(ij)` is co-factos of `a_(ij)`, then A is given by :

A

`a_(11)A_(31)+a_(12)A_(32)+a_(13)A_(33)`

B

`a_(11)A_(11)+a_(12)A_(21)+a_(13)A_(33)`

C

`a_(21)A_(11)+a_(22)A_(12)+a_(23)A_(13)`

D

`a_(11)A_(11)+a_(21)A_(21)+a_(31)A_(31)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the determinant of the matrix \( A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \), we will use the formula for the determinant of a 3x3 matrix. ### Step 1: Write the formula for the determinant of a 3x3 matrix. The determinant of a 3x3 matrix can be calculated using the following formula: \[ \text{det}(A) = a_{11}(a_{22}a_{33} - a_{23}a_{32}) - a_{12}(a_{21}a_{33} - a_{23}a_{31}) + a_{13}(a_{21}a_{32} - a_{22}a_{31}) \] ### Step 2: Apply the formula to our matrix. Using the elements of matrix \( A \): \[ \text{det}(A) = a_{11}(a_{22}a_{33} - a_{23}a_{32}) - a_{12}(a_{21}a_{33} - a_{23}a_{31}) + a_{13}(a_{21}a_{32} - a_{22}a_{31}) \] ### Step 3: Simplify the expression. Now, we can simplify the expression to get the determinant in a more compact form: \[ \text{det}(A) = a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - a_{13}a_{22}a_{31} - a_{11}a_{23}a_{32} - a_{12}a_{21}a_{33} \] ### Step 4: Conclusion. Thus, the determinant of the matrix \( A \) is given by: \[ \text{det}(A) = a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - a_{13}a_{22}a_{31} - a_{11}a_{23}a_{32} - a_{12}a_{21}a_{33} \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTIONS (Fill in the blanks)|10 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTIONS (True or False)|5 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Exercise 4(h) (LONG ANSWER TYPE QUESTIONS)|52 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos

Similar Questions

Explore conceptually related problems

If Delta=|[a_(11),a_(12),a_(13)],[a_(21),a_(22),a_(23)],[a_(31),a_(32),a_(33)]| and A_(i j) is cofactors of a_(i j) , then value of Delta is given by A. a_(11)A_(31)+a_(12)A_(32)+a_(13)A_(33) B. a_(11)A_(11)+a_(12)A_(21)+a_(13)A_(31) C. a_(21)A_(11) + a_(22)A_(12) + a_(23)A_(13) D. a_(11)A_(11) + a_(21)A_(21) + a_(31)A_(31)

If A=[[a_(11), a_(12), a_(13)], [a_(21), a_(22), a_(23)], [a_(31), a_(32), a_(33)]] and A_(ij) denote the cofactor of element a_(ij) , then a_(11)A_(21)+a_(12)A_(22)+a_(13)A_(23)=

If A=[[a_(11), a_(12), a_(13)], [a_(21), a_(22), a_(23)], [a_(31), a_(32), a_(33)]] and a_(ij) denote the cofactor of element A_(ij) , then a_(11)A_(11)+a_(12)A_(12)+a_(13)A_(13)=

If matrix [(1,2,-1),(3,4,5),(2,6,7)] and its inverse is denoted by A^(-1)=[(a_(11),a_(12),a_(13)),(a_(21),a_(22),a_(23)),(a_(31),a_(32),a_(33))] value of a_(32)=

Let A=[a_(ij)]_(3xx3) be a matrix such that A.A^(T)=4I and a_(ij)+2c_(ij)=0 where c_(ij) is the cofactor of a_(ij) AAi & j , I is the unit matrix of order 3 and A^(T) is the transpose of the matrix A If |(a_(11)+4,a_(12), a_(3)),(a_(21),a_(22)+4,a_(24)),(a_(31),a_(32),a_(33)+4)|+5lamda|(a_(11)+1,a_(12),a_(13)),(a_(21),a_(22)+1,a_(23)),(a_(31),a_(32),a_(33)+1)|=0 then lamda=a/b where a and b are coprime positive integers then the value of a+b is______

If A=[(a_(11),a_(12)),(a_(21),a_(22))] , then minor of a_(11) (i. e., M_(11)) is

If A=[{:(a_(11),a_(12),a_(13)),(a_(21),a_(22),a_(23)):}]" and "B=[{:(b_(11),b_(12)),(b_(21),b_(22)),(b_(31),b_(32)):}] then show that AB and BA both exist. Find AB and BA.

Let A=[a_(ij)]_(3xx3) be a square matrix such that A A^(T)=4I, |A| lt 0 . If |(a_(11)+4,a_(12),a_(13)),(a_(21),a_(22)+4,a_(23)),(a_(31),a_(32),a_(33)+4)|=5lambda|A+I|. Then lambda is equal to

If a_(1),a_(2),a_(3),a_(4),a_(5) are in HP, then a_(1)a_(2)+a_(2)a_(3)+a_(3)a_(4)+a_(4)a_(5) is eqiual to

If matrix A=[[1, 0, -1], [3, 4, 5], [0, 6, 7]] and its inverse is denoted by A^(-1)=[[a_(11), a_(12), a_(13)], [a_(21), a_(22), a_(23)], [a_(31), a_(32), a_(33)]], then the value of a_(23) =

MODERN PUBLICATION-DETERMINANTS-OBJECTIVE TYPE QUESTIONS (Multiple choice question)
  1. Which of the following is correct ?

    Text Solution

    |

  2. If area of triangle is 35 sq units with vertices (2, - 6), (5, 4) a n ...

    Text Solution

    |

  3. If A=[{:(a(11),a(12),a(13)),(a(21),a(22),a(23)),(a(31),a(32),a(33)):}]...

    Text Solution

    |

  4. Let A be a non-singular square matrix of order 3 xx3. Then |adj A| is ...

    Text Solution

    |

  5. If A is an invertible matrix of order 2, then det (A^(-1))is equal to...

    Text Solution

    |

  6. Choose the correct answer in questions 17 to 19: If a, b, c are in ...

    Text Solution

    |

  7. Choose the correct answer If x, y, z are nonzero real numbers then th...

    Text Solution

    |

  8. Let A=[(1,sintheta, 1),(-sintheta, 1, sintheta),(-1, -sintheta, 1)], w...

    Text Solution

    |

  9. If |(2x,5),(8,x)|=|(6,-2),(7,3)| then the value of x is

    Text Solution

    |

  10. Let Delta(1)=|{:(Ax,x^(2),1),(By,y^(2),1),(Cz,z^(2),1):}| and Delta(2)...

    Text Solution

    |

  11. If x , y in R , then the determinant =|cosx-sinx1sinxcosx1cos(x+y)-si...

    Text Solution

    |

  12. If the area of a triangle with vertices (-3,0),(3,0) and (0,0 is 9 sq....

    Text Solution

    |

  13. If A,B and C are angles of a triangle then the determinant |(-1,cosC...

    Text Solution

    |

  14. If A is a sqaure matrix of order 3xx3 and |A|=5, then |adj.A| is

    Text Solution

    |

  15. The value of 'x' for which |{:(3,x),(x,1):}|=|{:(3,2),(4,1):}| is

    Text Solution

    |

  16. Evalute the determinants in queations 1 and 2 : If |{:(x,2),(18,x):}...

    Text Solution

    |

  17. If A is a matrix of order 3xx3 and |A|=10 , then |adj.A| is

    Text Solution

    |

  18. If A is an invertible matrix of order 2, then det (A^(-1))is equal to...

    Text Solution

    |

  19. If |{:(2,3-x),(1,4):}|=0, then value of 'x' is

    Text Solution

    |

  20. If |{:(x,12),(3,x):}|=|{:(6,18),(2,6):}|, then value of 'x' is

    Text Solution

    |