Home
Class 12
MATHS
Let Delta(1)=|{:(Ax,x^(2),1),(By,y^(2),1...

Let `Delta_(1)=|{:(Ax,x^(2),1),(By,y^(2),1),(Cz,z^(2),1):}|` and `Delta_(2)=|{:(A,B,C),(x,y,z),(yz,zx,xy):}|`, then :

A

`Delta_(1)=-Delta`

B

`Delta ne Delta_(1)`

C

`Delta-Delta_(1)=0`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the two determinants given: 1. \( \Delta_1 = \begin{vmatrix} Ax & x^2 & 1 \\ By & y^2 & 1 \\ Cz & z^2 & 1 \end{vmatrix} \) 2. \( \Delta_2 = \begin{vmatrix} A & B & C \\ x & y & z \\ yz & zx & xy \end{vmatrix} \) We will find the relationship between these two determinants step by step. ### Step 1: Analyze \( \Delta_2 \) We start with the determinant \( \Delta_2 \): \[ \Delta_2 = \begin{vmatrix} A & B & C \\ x & y & z \\ yz & zx & xy \end{vmatrix} \] ### Step 2: Transpose \( \Delta_2 \) Using the property of determinants that states the determinant of a matrix is equal to the determinant of its transpose, we have: \[ \Delta_2 = \begin{vmatrix} A & x & yz \\ B & y & zx \\ C & z & xy \end{vmatrix} \] ### Step 3: Row Operations on \( \Delta_2 \) Next, we will perform row operations. We can multiply the first row by \( x \), the second row by \( y \), and the third row by \( z \): \[ \Delta_2 = \begin{vmatrix} Ax & By & Cz \\ x & y & z \\ yz & zx & xy \end{vmatrix} \] ### Step 4: Factor Out \( xyz \) Since we multiplied each row by \( x \), \( y \), and \( z \), we need to account for this by dividing by \( xyz \): \[ \Delta_2 = \frac{1}{xyz} \begin{vmatrix} Ax & By & Cz \\ x & y & z \\ yz & zx & xy \end{vmatrix} \] ### Step 5: Simplify the Determinant Now we can factor out \( xyz \) from the third column: \[ \Delta_2 = \frac{1}{xyz} \begin{vmatrix} Ax & By & Cz \\ x & y & z \\ 1 & 1 & 1 \end{vmatrix} \] ### Step 6: Compare with \( \Delta_1 \) Now we can see that: \[ \Delta_1 = \begin{vmatrix} Ax & x^2 & 1 \\ By & y^2 & 1 \\ Cz & z^2 & 1 \end{vmatrix} \] ### Step 7: Establish the Relationship From the previous steps, we can conclude that: \[ \Delta_2 = \Delta_1 \] Thus, we can write: \[ \Delta_2 - \Delta_1 = 0 \] ### Conclusion The relationship between the two determinants is: \[ \Delta_2 = \Delta_1 \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTIONS (Fill in the blanks)|10 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTIONS (True or False)|5 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Exercise 4(h) (LONG ANSWER TYPE QUESTIONS)|52 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos

Similar Questions

Explore conceptually related problems

If Delta=|{:(1,x,x^(2)),(1,y,y^(2)),(1,z,z^(2)):}| , Delta_(1)=|{:(1,1,1),(yz,zx,xy),(x,y,z):}| , then prove that Delta+Delta_(1)=0

Show that Delta =Delta_(1) , where Delta = |[Ax,x^(2), 1],[By, y^(2), 1],[Cz, z^(2),1]| "and "Delta_(1) = |[A,B, C],[x, y, z],[zy, zx,xy]|

The value of |{:(x,x^2-yz,1),(y,y^2-zy,1),(z,z^2-xy,1):}| is

Prove that |{:(ax,,by,,cz),(x^(2),,y^(2),,z^(2)),(1,,1,,1):}|=|{:(a,,c,,c),(x,,y,,z),(yz,,xz,,xy):}|

Without expending, prove that : (i) |{:(b^(2)c^(2),bc,b+c),(c^(2)a^(2),ca,c+a),(a^(2)b^(2),ab,a+b):}|=0 (ii) |{:(x,y,z),(x^(2),y^(2),z^(2)),(yz,zx,xy):}|=|{:(1,1,1),(x^(2),y^(2),z^(2)),(x^(3),y^(3),z^(3)):}| (iii) |{:(1,2x,x^(2)-yz),(1,y,y^(2)-zx),(1,z,z^(2)-xy):}| ("Taking 2, 3 and "2/3"common from "C_(1),C_(2)" and "C_(3)" repectively") =4xx49 ["from eq.(1)"] =198. (iv) |{:(sinx,cosx,sin(x+alpha)),(siny,cosy,sin(y+alpha)),(sinz,cosz,sin(z+alpha)):}|=0

If Delta_1 = |[1,1,1] , [x^2, y^2, z^2] , [x,y,z]| and Delta_2=|[1,1,1] , [yz, zx, xy] , [x,y,z]| then without expanding show that Delta_1= Delta_2

Prove the following : |(1,x,x^(2)-yz),(1,y,y^(2)-zx),(1,z,z^(2)-xy)|=0 .

|[1/x,1/y,1/z],[x^(2),y^(2),z^(2)],[yz,zx,xy]|

MODERN PUBLICATION-DETERMINANTS-OBJECTIVE TYPE QUESTIONS (Multiple choice question)
  1. Let A be a non-singular square matrix of order 3 xx3. Then |adj A| is ...

    Text Solution

    |

  2. If A is an invertible matrix of order 2, then det (A^(-1))is equal to...

    Text Solution

    |

  3. Choose the correct answer in questions 17 to 19: If a, b, c are in ...

    Text Solution

    |

  4. Choose the correct answer If x, y, z are nonzero real numbers then th...

    Text Solution

    |

  5. Let A=[(1,sintheta, 1),(-sintheta, 1, sintheta),(-1, -sintheta, 1)], w...

    Text Solution

    |

  6. If |(2x,5),(8,x)|=|(6,-2),(7,3)| then the value of x is

    Text Solution

    |

  7. Let Delta(1)=|{:(Ax,x^(2),1),(By,y^(2),1),(Cz,z^(2),1):}| and Delta(2)...

    Text Solution

    |

  8. If x , y in R , then the determinant =|cosx-sinx1sinxcosx1cos(x+y)-si...

    Text Solution

    |

  9. If the area of a triangle with vertices (-3,0),(3,0) and (0,0 is 9 sq....

    Text Solution

    |

  10. If A,B and C are angles of a triangle then the determinant |(-1,cosC...

    Text Solution

    |

  11. If A is a sqaure matrix of order 3xx3 and |A|=5, then |adj.A| is

    Text Solution

    |

  12. The value of 'x' for which |{:(3,x),(x,1):}|=|{:(3,2),(4,1):}| is

    Text Solution

    |

  13. Evalute the determinants in queations 1 and 2 : If |{:(x,2),(18,x):}...

    Text Solution

    |

  14. If A is a matrix of order 3xx3 and |A|=10 , then |adj.A| is

    Text Solution

    |

  15. If A is an invertible matrix of order 2, then det (A^(-1))is equal to...

    Text Solution

    |

  16. If |{:(2,3-x),(1,4):}|=0, then value of 'x' is

    Text Solution

    |

  17. If |{:(x,12),(3,x):}|=|{:(6,18),(2,6):}|, then value of 'x' is

    Text Solution

    |

  18. Let A be a non-singular square matrix of order 3 xx3. Then |adj A| is ...

    Text Solution

    |

  19. If A and B are invertible matrices of the same order, then (AB)' is eq...

    Text Solution

    |

  20. If determinant A is order 2xx2 and |A|=3, then the value of |2A| is

    Text Solution

    |