Home
Class 12
MATHS
If x , y in R , then the determinant =|...

If `x , y in R ,` then the determinant `=|cosx-sinx1sinxcosx1cos(x+y)-sin(x+y)0|` lies in the interval `[-sqrt(2),sqrt(2)]` (b) `[-1,1]` `[-sqrt(2),1]` (d) `[-1,-sqrt(2)]`

A

`[-sqrt(2),sqrt(2)]`

B

`[-1,1]`

C

`[-sqrt(2),1]`

D

`[-1,-sqrt(2)]`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTIONS (Fill in the blanks)|10 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTIONS (True or False)|5 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Exercise 4(h) (LONG ANSWER TYPE QUESTIONS)|52 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos

Similar Questions

Explore conceptually related problems

The area enclosed by the curve y=sin x+cos x and y=|cos x-sin x| over the interval [0,(pi)/(2)] is 4(sqrt(2)-2) (b) 2sqrt(2)(sqrt(2)-1)2(sqrt(2)+1)(d)2sqrt(2)(sqrt(2)+1)

y=sin^(-1)((sinx+cosx)/sqrt2)=?

The area enclosed by the curves y=sin x+cos x and y=|cos x-sin x| over the interval [0,(pi)/(2)] is (a) 4(sqrt(2)-1) (b) 2sqrt(2)(sqrt(2)-1)(c)2(sqrt(2)+1)(d)2sqrt(2)(sqrt(2)+1)

The area of the figure bounded by the curves y=cosx and y=sinx and the ordinates x=0 and x=pi/4 is (A) sqrt(2)-1 (B) sqrt(2)+1 (C) 1/sqrt(2)(sqrt(2)-1) (D) 1/sqrt(2)

A solution of sin^-1 (1) -sin^-1 (sqrt(3)/x^2)- pi/6 =0 is (A) x=-sqrt(2) (B) x=sqrt(2) (C) x=2 (D) x= 1/sqrt(2)

Solution set of inequation ( cos^-1x)^2-(sin^-1x)^2gt0 is (A) [0, 1/sqrt(2)) (B) [-1, 1/sqrt(2)) (C) (-1,sqrt2) (D) none of these

If y=(sin^(-1)x cos^(-1)((x^2)/2))/(1+x^2) then find the value of y(1/2) + y(1/sqrt2) + y(-1/2) + y(-1/sqrt2)

If cos x=(2cos y-1)/(2-cos y), where x,y in(0,pi) then tan(x)/(2)cot(y)/(2) is equal to sqrt(2)( b) sqrt(3)(c)(1)/(sqrt(2))(d)(1)/(sqrt(3))

if y=sin^(-1)[sqrt(x-ax)-sqrt(a-ax)] then prove that (1)/(2sqrt(x)sqrt(1-x))

MODERN PUBLICATION-DETERMINANTS-OBJECTIVE TYPE QUESTIONS (Multiple choice question)
  1. Let A be a non-singular square matrix of order 3 xx3. Then |adj A| is ...

    Text Solution

    |

  2. If A is an invertible matrix of order 2, then det (A^(-1))is equal to...

    Text Solution

    |

  3. Choose the correct answer in questions 17 to 19: If a, b, c are in ...

    Text Solution

    |

  4. Choose the correct answer If x, y, z are nonzero real numbers then th...

    Text Solution

    |

  5. Let A=[(1,sintheta, 1),(-sintheta, 1, sintheta),(-1, -sintheta, 1)], w...

    Text Solution

    |

  6. If |(2x,5),(8,x)|=|(6,-2),(7,3)| then the value of x is

    Text Solution

    |

  7. Let Delta(1)=|{:(Ax,x^(2),1),(By,y^(2),1),(Cz,z^(2),1):}| and Delta(2)...

    Text Solution

    |

  8. If x , y in R , then the determinant =|cosx-sinx1sinxcosx1cos(x+y)-si...

    Text Solution

    |

  9. If the area of a triangle with vertices (-3,0),(3,0) and (0,0 is 9 sq....

    Text Solution

    |

  10. If A,B and C are angles of a triangle then the determinant |(-1,cosC...

    Text Solution

    |

  11. If A is a sqaure matrix of order 3xx3 and |A|=5, then |adj.A| is

    Text Solution

    |

  12. The value of 'x' for which |{:(3,x),(x,1):}|=|{:(3,2),(4,1):}| is

    Text Solution

    |

  13. Evalute the determinants in queations 1 and 2 : If |{:(x,2),(18,x):}...

    Text Solution

    |

  14. If A is a matrix of order 3xx3 and |A|=10 , then |adj.A| is

    Text Solution

    |

  15. If A is an invertible matrix of order 2, then det (A^(-1))is equal to...

    Text Solution

    |

  16. If |{:(2,3-x),(1,4):}|=0, then value of 'x' is

    Text Solution

    |

  17. If |{:(x,12),(3,x):}|=|{:(6,18),(2,6):}|, then value of 'x' is

    Text Solution

    |

  18. Let A be a non-singular square matrix of order 3 xx3. Then |adj A| is ...

    Text Solution

    |

  19. If A and B are invertible matrices of the same order, then (AB)' is eq...

    Text Solution

    |

  20. If determinant A is order 2xx2 and |A|=3, then the value of |2A| is

    Text Solution

    |