Home
Class 12
MATHS
If |{:(x,12),(3,x):}|=|{:(6,18),(2,6):}|...

If `|{:(x,12),(3,x):}|=|{:(6,18),(2,6):}|`, then value of 'x' is

A

`+-4`

B

`+-6`

C

`+-8`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( |(x, 12), (3, x)| = |(6, 18), (2, 6)| \), we will first compute the determinants on both sides and then equate them. ### Step 1: Calculate the determinant on the left side The left side determinant is given by: \[ |(x, 12), (3, x)| = x \cdot x - 12 \cdot 3 = x^2 - 36 \] ### Step 2: Calculate the determinant on the right side The right side determinant is given by: \[ |(6, 18), (2, 6)| = 6 \cdot 6 - 18 \cdot 2 = 36 - 36 = 0 \] ### Step 3: Set the two determinants equal to each other Now, we set the two determinants equal: \[ x^2 - 36 = 0 \] ### Step 4: Solve for \( x \) To solve for \( x \), we can rearrange the equation: \[ x^2 = 36 \] Taking the square root of both sides gives us: \[ x = \pm 6 \] ### Final Answer Thus, the values of \( x \) are \( 6 \) and \( -6 \). ---
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTIONS (Fill in the blanks)|10 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTIONS (True or False)|5 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Exercise 4(h) (LONG ANSWER TYPE QUESTIONS)|52 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos

Similar Questions

Explore conceptually related problems

If |{:(x,2),(18,x):}|=|{:(6,2),(18,6):}| then x is equal to

If |(x,2),(18,x)| = |(6,2),(18,6)| , then the value of x is:

If [{:(x,2),(18,x):}]=[{:(6,2),(18,6):}] , then 'x' is equal to +-6 .

if 6sin_(1)(x^(2)-6x+12)=2 pi, then the value of x, is

If 2 [{:(1, 3),(0,x):}] + [{:(y, 0),(1,2):}] ^(T) = {[{:( 5, 6),(1,8):}]^(T)} ^(T), then the values of x, y respectively are :

If (6x)^(6)=6^(2^(3)) , then find the value of x.

MODERN PUBLICATION-DETERMINANTS-OBJECTIVE TYPE QUESTIONS (Multiple choice question)
  1. Let A be a non-singular square matrix of order 3 xx3. Then |adj A| is ...

    Text Solution

    |

  2. If A is an invertible matrix of order 2, then det (A^(-1))is equal to...

    Text Solution

    |

  3. Choose the correct answer in questions 17 to 19: If a, b, c are in ...

    Text Solution

    |

  4. Choose the correct answer If x, y, z are nonzero real numbers then th...

    Text Solution

    |

  5. Let A=[(1,sintheta, 1),(-sintheta, 1, sintheta),(-1, -sintheta, 1)], w...

    Text Solution

    |

  6. If |(2x,5),(8,x)|=|(6,-2),(7,3)| then the value of x is

    Text Solution

    |

  7. Let Delta(1)=|{:(Ax,x^(2),1),(By,y^(2),1),(Cz,z^(2),1):}| and Delta(2)...

    Text Solution

    |

  8. If x , y in R , then the determinant =|cosx-sinx1sinxcosx1cos(x+y)-si...

    Text Solution

    |

  9. If the area of a triangle with vertices (-3,0),(3,0) and (0,0 is 9 sq....

    Text Solution

    |

  10. If A,B and C are angles of a triangle then the determinant |(-1,cosC...

    Text Solution

    |

  11. If A is a sqaure matrix of order 3xx3 and |A|=5, then |adj.A| is

    Text Solution

    |

  12. The value of 'x' for which |{:(3,x),(x,1):}|=|{:(3,2),(4,1):}| is

    Text Solution

    |

  13. Evalute the determinants in queations 1 and 2 : If |{:(x,2),(18,x):}...

    Text Solution

    |

  14. If A is a matrix of order 3xx3 and |A|=10 , then |adj.A| is

    Text Solution

    |

  15. If A is an invertible matrix of order 2, then det (A^(-1))is equal to...

    Text Solution

    |

  16. If |{:(2,3-x),(1,4):}|=0, then value of 'x' is

    Text Solution

    |

  17. If |{:(x,12),(3,x):}|=|{:(6,18),(2,6):}|, then value of 'x' is

    Text Solution

    |

  18. Let A be a non-singular square matrix of order 3 xx3. Then |adj A| is ...

    Text Solution

    |

  19. If A and B are invertible matrices of the same order, then (AB)' is eq...

    Text Solution

    |

  20. If determinant A is order 2xx2 and |A|=3, then the value of |2A| is

    Text Solution

    |